We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
+1
39
1
avatar+429 

Answer: 85/8

 Mar 19, 2019
 #1
avatar+99237 
+2

See the following image :

 

 

Let A = (0, 0)   B = (10, 0)

We can find C thusly

Construct a circle with a radius of 21 centered at  A

The equation of this circle  =  x^2 + y^2 = 441     (1)

Construct anothe circle with a radius of 17 centered at  B

The equation of the circle is  (x - 10)^2 + y^2 = 289     (2)

Subtract   (2) from (1)    and we get that

x^2 - (x - 10)^2 = 152  

x^2 - x^2 + 20x  - 100 = 152

20x - 252 = 0

20x = 252

x = 12.6  this is the x coordinate of C

And taking the positive  value for y

y =  sqrt (441 - (12.6)^2)  = 16.8

So....C = ( 12.6 , 16.8)

The midpoint of AC  = ( 6.3, 8.4)

The slope of the line between A and C is  8.4 /6.3 =  4/3

So...the equation of the perpendicular bisector to AC =

y = (-3/4) (x - 6.3) + 8.4      

And the midpoint of AB  = (5, 0)

So....the equation of the perpendicular bisector to AB = x = 5    

This is the x coordinate of the center of the circumscribing circle

The y value is      -.75 ( 5 - 6.3) + 8.4  = 9.375  = 9 + 3/8  =  75/8

 

So...the radius of the circumscribing circle is the distance from this point to A  ans is given by :

 

sqrt  (5^2 + (75/8)^2 )  =  sqrt  ( 1600 + 5625) / 8  =  sqrt (7225) / 8  =  85 / 8 

 

 

cool cool cool

 Mar 19, 2019

9 Online Users