+0  
 
0
741
3
avatar+937 

Answer: 256/17

 Mar 16, 2019
 #1
avatar+937 
+1

I tried setting the side length to a. Then, I used the length given and got an equation for the third small triangle. Then I got confused on how to solve that. Is there any other way?

 Mar 16, 2019
 #2
avatar+129850 
0

Call the side of the square, S

 

So...the area of the square = S^2

 

The area of the small triangle at the bottom left  = S* [ sqrt (4^2 - S^2) ] /2 / 2      (1)

 

The area of the small triangle at the top right = S* [ sqrt (5^2 - S^2)] /2        (2)

 

And the area of the small triangle at the top left =   [ S  - sqrt (4^2 - S^2)] [ S - sqrt (5^ - S^2) ] / 2     (3)

 

And the area of the right triangle = 6     (4)

 

So

 

(1) + (2) + (3) + (4)  =  S^2

 

S* [ sqrt (16 - S^2 ] /2  + S* [ sqrt (25 - S^2)] / 2   + [ S  - sqrt (16 - S^2)] [ S - sqrt (25 - S^2) ] / 2 + 6 = S^2 

 

 

S* [ sqrt (16 - S^2 ]   + S* [ sqrt (25 - S^2)] + [ S  - sqrt (16 - S^2)] [ S - sqrt (25 - S^2) ]  + 12 = 2 S^2 

 

 

S* [ sqrt (16 - S^2 ]   + S* [ sqrt (25 - S^2)] + [ S  - sqrt (16 - S^2)] [ S - sqrt (25 - S^2) ]  + 12 = 2 S^2 

 

S* [ sqrt ( 16 - S^2) ] + S*[ sqrt (25 - S^2) ]  + S^2  - S*[ sqrt (16 - S^2)] - S* [ sqrt (25 - S^2)] +

sqrt [ ( 16 - S^2)  (25 - S^2) ] + 12  = 2S^2

 

 

sqrt [ (16 - S^2) (25 - S^2)] =  S^2 - 12       square both sides

 

(16 - S^2) ( 25 - S^2)  =  S^4 - 24S^2 + 144

 

400 - 41S^2 + S^4  = S^4 - 24S^2 + 144

 

17S^2  - 256  = 0

 

17S^2 = 256

 

S^2  =   256 / 17

 

 

cool cool cool

 Mar 16, 2019
 #3
avatar+937 
0

Thanks!!!

dgfgrafgdfge111  Mar 18, 2019

3 Online Users

avatar