2015 SS 28
1.
cos-theorem:
\(\begin{array}{|rcll|} \hline BM^2&=&x^2+\left(\dfrac{x}{2}\right)^2-2\cdot x \cdot \dfrac{x}{2}\cos(108^\circ) \\ BM^2 &=& x^2\left(1+\dfrac{1}{4}-\cos(108^\circ)\right) \quad |\quad \cos(108^\circ)=\cos(180^\circ-72^\circ)=-\cos(72^\circ) \\ BM^2 &=& x^2\left( \dfrac{5}{4}+\cos(72^\circ)\right) \\ \mathbf{BM} &\mathbf{=}& \mathbf{x \sqrt{\dfrac{5}{4}+\cos(72^\circ)}} \\ \hline \end{array} \)
2.
sin-theorem:
\(\begin{array}{|rcll|} \hline \dfrac{\sin(z)}{x} &=& \dfrac{\sin(36^\circ)}{ZB} \\\\ \mathbf{ZB} &\mathbf{=}& \mathbf{\dfrac{\sin(36^\circ)}{\sin(z)}x }\\ \hline \end{array} \)
3.
sin-theorem:
\(\begin{array}{|rcll|} \hline \dfrac{\sin(180^\circ-z)}{\frac{x}{2}} &=& \dfrac{\sin(72^\circ)}{ZM} \\\\ \dfrac{2\sin(z)}{x} &=& \dfrac{\sin(72^\circ)}{ZM} \\\\ \mathbf{ZM} &\mathbf{=}& \mathbf{\dfrac{\sin(72^\circ)}{2\sin(z)}x }\\ \hline \end{array} \)
\(\mathbf{z=\ ?}\)
\(\begin{array}{|rcll|} \hline BM &=& ZB+ZM \\ BM&=& \dfrac{\sin(36^\circ)}{\sin(z)}x+\dfrac{\sin(72^\circ)}{2\sin(z)}x \\\\ BM&=& \dfrac{x}{\sin(z)} \left( \sin(36^\circ) + \dfrac{\sin(72^\circ)}{2}\right) \quad | \quad BM=x \sqrt{\dfrac{5}{4}+\cos(72^\circ)} \\\\ x \sqrt{\dfrac{5}{4}+\cos(72^\circ)}&=& \dfrac{x}{\sin(z)} \left( \sin(36^\circ) + \dfrac{\sin(72^\circ)}{2}\right) \\\\ \sqrt{\dfrac{5}{4}+\cos(72^\circ)}&=& \dfrac{1}{\sin(z)} \left( \sin(36^\circ) + \dfrac{\sin(72^\circ)}{2}\right) \\\\ \mathbf{\sin(z)} & \mathbf{=} & \mathbf{ \dfrac{ \sin(36^\circ) + \dfrac{\sin(72^\circ)}{2} }{\sqrt{\dfrac{5}{4}+\cos(72^\circ)}} } \\\\ z &=& 180^\circ- \arcsin\left( \dfrac{ \sin(36^\circ) + \dfrac{\sin(72^\circ)}{2} }{\sqrt{\dfrac{5}{4}+\cos(72^\circ)}}\right) \\ &=& 180^\circ- \arcsin\left( \dfrac{ 1.06331351044 }{1.24860602048} \right) \\ &=& 180^\circ- \arcsin\left( 0.85160049928 \right) \\ &=& 180^\circ- 58.3861775592^\circ \\ \mathbf{z} &\mathbf{=}& \mathbf{121.613822441^\circ} \\ \hline \end{array}\)
\(\text{Let $\angle ABM =180^\circ-(36^\circ+z) $} \\ \text{Let $ 36^\circ+z = 36^\circ+ 121.613822441^\circ=157.613822441^\circ$} \)
4.
sin-theorem:
\(\begin{array}{|rcll|} \hline \dfrac{\sin(z)}{x} &=& \dfrac{\sin(ABM)}{3} \quad | \quad \angle ABM =180^\circ-(36^\circ+z) \\\\ \dfrac{\sin(z)}{x} &=& \dfrac{\sin\Big(180^\circ-(36^\circ+z)\Big)}{3} \\\\ \dfrac{\sin(z)}{x} &=& \dfrac{\sin( 36^\circ+z )}{3} \\\\ \mathbf{x} &\mathbf{=}& \mathbf{3\cdot \dfrac{\sin(z)}{\sin( 36^\circ+z )} } \\\\ x & = & 3\cdot \dfrac{0.85160049928}{\sin( 157.613822441^\circ )} \\\\ x & = & 3\cdot \dfrac{0.85160049928}{0.38084732121} \\\\ x & = & 3\cdot 2.23606797751 \quad | \quad 2.23606797751 = \sqrt{5} \\ \mathbf{x} &\mathbf{=}& \mathbf{3\cdot \sqrt{5}} \\ \hline \end{array}\)
Thanks you. This is a great solution! But is there a way to do it without calc, because in this competition, calculators are not allowed.
dgf.....
Is that how you thank someone when they do hours ( quite possibly) of work for you at no cost to you ?
I wonder how you would feel if it was the other way around?
I wonder if you even would ever give a stranger hours of your time for free?
I notice that you gave yourself a point for your questions but never even gave Heureka one for his beautifully laid out answer.
No point, no thankyou.
It seems that my first impression of you was correct after all.
Okay, okay. I'm sorry. I just forgot to give him a point. I was just trying to ask if there was a way to do it without a calc. That's all.