+0  
 
0
544
3
avatar

When multiplied out, the number 2017!=1x2x3....x2015x2016x2017 end with a striking of zeros. How many zeros are there at the end of this number.

Guest Mar 28, 2017
 #2
avatar+19599 
+2

When multiplied out, the number 2017!=1x2x3....x2015x2016x2017 end with a striking of zeros.

How many zeros are there at the end of this number.

 

Let n = 2017

 

Legendre's Theorem - The Prime Factorization of Factorials:

\(\begin{array}{|r|r|c|l|} \hline \text{p=factor} & \text{to base}_p & s=\text{ the sum of all the digits} & \text{exponent }= \frac{n-s} {\text{p }-1} \\ & & \text{in the expansion of n in base p } & \\ \hline 2 & 11111100001_2 & 7 & \frac{2017-7}{2-1} = 2010 \\ 3 & 2202201_3 & 9 & \frac{2017-9}{3-1} = 1004 \\ 5 & 31032_5 & 9 & \frac{2017-9}{5-1} = 502 \\ \cdots & \cdots & \cdots & \cdots \\ \hline \end{array}\)

 

Prime factorization on 2017!:

\(2^{2010}\times 3^{1004}\times 5^{502}\times 7^{334}\times 11^{200}\times \ldots \times 1999\times 2003\times 2011\times 2017\)

 

Zeros at the end of 2017!:

\(\begin{array}{|rcll|} \hline 2^{502} \times 5^{502} &=& (2\cdot5)^{502}=10^{502} \\ \hline \end{array}\)

 

There are 502 zeros at the end of 2017!

 

laugh

heureka  Mar 28, 2017
 #3
avatar
+1

2017 / 5 =403

2017/25 =80

2017/125 =16

2017/625 =3

Number of trailing zeros of 2017! =403 + 80 + 16 + 3 =502.

Guest Mar 28, 2017

15 Online Users

avatar

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.