+0

# 2017!

0
438
3

When multiplied out, the number 2017!=1x2x3....x2015x2016x2017 end with a striking of zeros. How many zeros are there at the end of this number.

Guest Mar 28, 2017
Sort:

#2
+19084
+2

When multiplied out, the number 2017!=1x2x3....x2015x2016x2017 end with a striking of zeros.

How many zeros are there at the end of this number.

Let n = 2017

Legendre's Theorem - The Prime Factorization of Factorials:

$$\begin{array}{|r|r|c|l|} \hline \text{p=factor} & \text{to base}_p & s=\text{ the sum of all the digits} & \text{exponent }= \frac{n-s} {\text{p }-1} \\ & & \text{in the expansion of n in base p } & \\ \hline 2 & 11111100001_2 & 7 & \frac{2017-7}{2-1} = 2010 \\ 3 & 2202201_3 & 9 & \frac{2017-9}{3-1} = 1004 \\ 5 & 31032_5 & 9 & \frac{2017-9}{5-1} = 502 \\ \cdots & \cdots & \cdots & \cdots \\ \hline \end{array}$$

Prime factorization on 2017!:

$$2^{2010}\times 3^{1004}\times 5^{502}\times 7^{334}\times 11^{200}\times \ldots \times 1999\times 2003\times 2011\times 2017$$

Zeros at the end of 2017!:

$$\begin{array}{|rcll|} \hline 2^{502} \times 5^{502} &=& (2\cdot5)^{502}=10^{502} \\ \hline \end{array}$$

There are 502 zeros at the end of 2017!

heureka  Mar 28, 2017
#3
+1

2017 / 5 =403

2017/25 =80

2017/125 =16

2017/625 =3

Number of trailing zeros of 2017! =403 + 80 + 16 + 3 =502.

Guest Mar 28, 2017

### 28 Online Users

We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  See details