2022^2021+2019^2020 can you say the last digit
Only considering the last digits
2^1=2
2^2=4
2^3=8
2^4=*6
2^5=*2
2^6=*4
2^7=2^3=*8
2^8=2^4=*6
2^9=2^(5+4)=2^5=*2
so
I need to put 2021 = 1+ 4*505
So the last digit of 2022^2021 will be 2
-------------------------
Now look at powers of 9
9^1=9
9^2=81
9^3=729
9^4 = 6561
9^(1+2n)= **9
9^(2+2n)=**1
9^2020=9^(2*1010) the last digit will be 1
---------------------
2022^2021+2019^2020 the last digit will be 2+1=3
You need to check what I have done.
Вам нужно проверить, что я сделал