297,49*(e^(-t/69,44) -140.83=0) i wanna no how much the t is i think round 50
Solve for t over the real numbers:
297.49 e^(-0.0144009 t) - 140.83 = 0
297.49 e^(-0.0144009 t) - 140.83 = 29749/100 e^(-(25 t)/1736) - 14083/100:
29749/100 e^(-(25 t)/1736) - 14083/100 = 0
Bring 29749/100 e^(-(25 t)/1736) - 14083/100 together using the common denominator 100 e^(25 t/1736):
-1/100 e^(-25 t/1736) (14083 e^((25 t)/1736) - 29749) = 0
Multiply both sides by -100:
e^(-25 t/1736) (14083 e^((25 t)/1736) - 29749) = 0
Split into two equations:
e^(-25 t/1736) = 0 or 14083 e^((25 t)/1736) - 29749 = 0
e^(-25 t/1736) = 0 has no solution since for all z element R, e^z>0:
14083 e^((25 t)/1736) - 29749 = 0
Add 29749 to both sides:
14083 e^(25 t/1736) = 29749
Divide both sides by 14083:
e^(25 t/1736) = 29749/14083
Take the natural logarithm of both sides:
(25 t)/1736 = log(29749/14083)
Multiply both sides by 1736/25:
Answer: |t = 1736/25 log(29749/14083)= 51.92911533539