2cos^2(x)-sin(x)-1=0
2cos2(x)−sin(x)−1=0|cos2(x)=1−sin2(x)2[1−sin2(x)]−sin(x)−1=02−2sin2(x)−sin(x)−1=0−2sin2(x)−sin(x)+1=0|⋅(−1)2sin2(x)+sin(x)−1=0[2sin(x)−1]⋅[sin(x)+1]=0[2sin(x)−1]⏟=0⋅[sin(x)+1]⏟=0=0sin(x)+1=0sin(x)=−1x=arcsin(−1)±2kπx=−π2±2kπk∈Z2sin(x)−1=02sin(x)=1sin(x)=12x=arcsin(12)±2kπx=π6±2kπk∈Zsin(π−x)=12π−x=arcsin(12)±2kππ−x=π6±2kπx=56π±2kπk∈Z
2cos^2(x)-sin(x)-1=0
2cos2(x)−sin(x)−1=0|cos2(x)=1−sin2(x)2[1−sin2(x)]−sin(x)−1=02−2sin2(x)−sin(x)−1=0−2sin2(x)−sin(x)+1=0|⋅(−1)2sin2(x)+sin(x)−1=0[2sin(x)−1]⋅[sin(x)+1]=0[2sin(x)−1]⏟=0⋅[sin(x)+1]⏟=0=0sin(x)+1=0sin(x)=−1x=arcsin(−1)±2kπx=−π2±2kπk∈Z2sin(x)−1=02sin(x)=1sin(x)=12x=arcsin(12)±2kπx=π6±2kπk∈Zsin(π−x)=12π−x=arcsin(12)±2kππ−x=π6±2kπx=56π±2kπk∈Z