That really good MWizzard
I'd like to show you a little bit more :)
This is your code.
\({\left ( {2n}^{3} \right )}^{4} = {\left ( 2 \times {n}^{3} \right )}^{4} = {\left ( 2 \times {n}^{3} \right )}^{4} = {2}^{4} \times {\left ( {n}^{3} \right )}^{4} = 16 \times {\left ( {n}^{3} \right )}^{4} = 16 {\left ( {n}^{3 \times 4} \right )} = 16 {\left ( {n}^{12} \right )} = 16 {n}^{12}\)
I expect you know that the left and right functions only make the brackets bigger :)
Most of those parentheses do nothing.
I have copied your code but left out all the unnecessary parentheses.
\left ( 2n^3 \right )^4= \left ( 2 \times n^3 \right )^4 = \left ( 2 \times n^3 \right )^4= 2^4 \times \left ( n^3 \right )^4 = 16 \times \left ( n^3 \right )^4 = 16 \left ( n^3 \times 4 \right ) = 16 \left ( n^{12} \right ) = 16 n^{12}
\(\left ( 2n^3 \right )^4= \left ( 2 \times n^3 \right )^4 = \left ( 2 \times n^3 \right )^4= 2^4 \times \left ( n^3 \right )^4 = 16 \times \left ( n^3 \right )^4 = 16 \left ( n^3 \times 4 \right ) = 16 \left ( n^{12} \right ) = 16 n^{12} \)
Now I am going to add some \\ commands these indicate to go to a new line
\left ( 2n^3 \right )^4\\= \left ( 2 \times n^3 \right )^4 \\= \left ( 2 \times n^3 \right )^4\\= 2^4 \times \left ( n^3 \right )^4 \\= 16 \times \left ( n^3 \right )^4\\ = 16 \left ( n^3 \times 4 \right )\\ = 16 \left ( n^{12} \right )\\ = 16 n^{12}
\(\left ( 2n^3 \right )^4\\= \left ( 2 \times n^3 \right )^4 \\= \left ( 2 \times n^3 \right )^4\\= 2^4 \times \left ( n^3 \right )^4 \\= 16 \times \left ( n^3 \right )^4\\ = 16 \left ( n^3 \times 4 \right )\\ = 16 \left ( n^{12} \right )\\ = 16 n^{12}\)
\({\left ( {2n}^{3} \right )}^{4} = {\left ( 2 \times {n}^{3} \right )}^{4} = {\left ( 2 \times {n}^{3} \right )}^{4} = {2}^{4} \times {\left ( {n}^{3} \right )}^{4} = 16 \times {\left ( {n}^{3} \right )}^{4} = 16 {\left ( {n}^{3 \times 4} \right )} = 16 {\left ( {n}^{12} \right )} = 16 {n}^{12}\)
.That really good MWizzard
I'd like to show you a little bit more :)
This is your code.
\({\left ( {2n}^{3} \right )}^{4} = {\left ( 2 \times {n}^{3} \right )}^{4} = {\left ( 2 \times {n}^{3} \right )}^{4} = {2}^{4} \times {\left ( {n}^{3} \right )}^{4} = 16 \times {\left ( {n}^{3} \right )}^{4} = 16 {\left ( {n}^{3 \times 4} \right )} = 16 {\left ( {n}^{12} \right )} = 16 {n}^{12}\)
I expect you know that the left and right functions only make the brackets bigger :)
Most of those parentheses do nothing.
I have copied your code but left out all the unnecessary parentheses.
\left ( 2n^3 \right )^4= \left ( 2 \times n^3 \right )^4 = \left ( 2 \times n^3 \right )^4= 2^4 \times \left ( n^3 \right )^4 = 16 \times \left ( n^3 \right )^4 = 16 \left ( n^3 \times 4 \right ) = 16 \left ( n^{12} \right ) = 16 n^{12}
\(\left ( 2n^3 \right )^4= \left ( 2 \times n^3 \right )^4 = \left ( 2 \times n^3 \right )^4= 2^4 \times \left ( n^3 \right )^4 = 16 \times \left ( n^3 \right )^4 = 16 \left ( n^3 \times 4 \right ) = 16 \left ( n^{12} \right ) = 16 n^{12} \)
Now I am going to add some \\ commands these indicate to go to a new line
\left ( 2n^3 \right )^4\\= \left ( 2 \times n^3 \right )^4 \\= \left ( 2 \times n^3 \right )^4\\= 2^4 \times \left ( n^3 \right )^4 \\= 16 \times \left ( n^3 \right )^4\\ = 16 \left ( n^3 \times 4 \right )\\ = 16 \left ( n^{12} \right )\\ = 16 n^{12}
\(\left ( 2n^3 \right )^4\\= \left ( 2 \times n^3 \right )^4 \\= \left ( 2 \times n^3 \right )^4\\= 2^4 \times \left ( n^3 \right )^4 \\= 16 \times \left ( n^3 \right )^4\\ = 16 \left ( n^3 \times 4 \right )\\ = 16 \left ( n^{12} \right )\\ = 16 n^{12}\)