+0  
 
+5
838
3
avatar

(2n^3)^4

 Apr 7, 2016

Best Answer 

 #3
avatar+118677 
+10

That really good MWizzard 

 

I'd like to show you a little bit more :)

 

 

This is your code.

\({\left ( {2n}^{3} \right )}^{4} = {\left ( 2 \times {n}^{3} \right )}^{4} = {\left ( 2 \times {n}^{3} \right )}^{4} = {2}^{4} \times {\left ( {n}^{3} \right )}^{4} = 16 \times {\left ( {n}^{3} \right )}^{4} = 16 {\left ( {n}^{3 \times 4} \right )} = 16 {\left ( {n}^{12} \right )} = 16 {n}^{12}\)  

 

I expect you know that the left and right functions only make the brackets bigger :)

Most of those parentheses do nothing.

 

I have copied your code but left out all the unnecessary parentheses.

 

\left ( 2n^3 \right )^4= \left ( 2 \times n^3 \right )^4 = \left ( 2 \times n^3 \right )^4= 2^4 \times \left ( n^3 \right )^4 = 16 \times \left ( n^3 \right )^4 = 16 \left ( n^3 \times 4 \right ) = 16 \left ( n^{12} \right ) = 16 n^{12}

 

\(\left ( 2n^3 \right )^4= \left ( 2 \times n^3 \right )^4 = \left ( 2 \times n^3 \right )^4= 2^4 \times \left ( n^3 \right )^4 = 16 \times \left ( n^3 \right )^4 = 16 \left ( n^3 \times 4 \right ) = 16 \left ( n^{12} \right ) = 16 n^{12} \)

 

Now I am going to add some \\ commands  these indicate to go to a new line

 

\left ( 2n^3 \right )^4\\= \left ( 2 \times n^3 \right )^4 \\= \left ( 2 \times n^3 \right )^4\\= 2^4 \times \left ( n^3 \right )^4 \\= 16 \times \left ( n^3 \right )^4\\ = 16 \left ( n^3 \times 4 \right )\\ = 16 \left ( n^{12} \right )\\ = 16 n^{12}

 

\(\left ( 2n^3 \right )^4\\= \left ( 2 \times n^3 \right )^4 \\= \left ( 2 \times n^3 \right )^4\\= 2^4 \times \left ( n^3 \right )^4 \\= 16 \times \left ( n^3 \right )^4\\ = 16 \left ( n^3 \times 4 \right )\\ = 16 \left ( n^{12} \right )\\ = 16 n^{12}\)

 Apr 7, 2016
 #1
avatar
+1

(2n^3)^4=16n^12

 Apr 7, 2016
 #2
avatar+426 
+5

\({\left ( {2n}^{3} \right )}^{4} = {\left ( 2 \times {n}^{3} \right )}^{4} = {\left ( 2 \times {n}^{3} \right )}^{4} = {2}^{4} \times {\left ( {n}^{3} \right )}^{4} = 16 \times {\left ( {n}^{3} \right )}^{4} = 16 {\left ( {n}^{3 \times 4} \right )} = 16 {\left ( {n}^{12} \right )} = 16 {n}^{12}\)  

.
 Apr 7, 2016
 #3
avatar+118677 
+10
Best Answer

That really good MWizzard 

 

I'd like to show you a little bit more :)

 

 

This is your code.

\({\left ( {2n}^{3} \right )}^{4} = {\left ( 2 \times {n}^{3} \right )}^{4} = {\left ( 2 \times {n}^{3} \right )}^{4} = {2}^{4} \times {\left ( {n}^{3} \right )}^{4} = 16 \times {\left ( {n}^{3} \right )}^{4} = 16 {\left ( {n}^{3 \times 4} \right )} = 16 {\left ( {n}^{12} \right )} = 16 {n}^{12}\)  

 

I expect you know that the left and right functions only make the brackets bigger :)

Most of those parentheses do nothing.

 

I have copied your code but left out all the unnecessary parentheses.

 

\left ( 2n^3 \right )^4= \left ( 2 \times n^3 \right )^4 = \left ( 2 \times n^3 \right )^4= 2^4 \times \left ( n^3 \right )^4 = 16 \times \left ( n^3 \right )^4 = 16 \left ( n^3 \times 4 \right ) = 16 \left ( n^{12} \right ) = 16 n^{12}

 

\(\left ( 2n^3 \right )^4= \left ( 2 \times n^3 \right )^4 = \left ( 2 \times n^3 \right )^4= 2^4 \times \left ( n^3 \right )^4 = 16 \times \left ( n^3 \right )^4 = 16 \left ( n^3 \times 4 \right ) = 16 \left ( n^{12} \right ) = 16 n^{12} \)

 

Now I am going to add some \\ commands  these indicate to go to a new line

 

\left ( 2n^3 \right )^4\\= \left ( 2 \times n^3 \right )^4 \\= \left ( 2 \times n^3 \right )^4\\= 2^4 \times \left ( n^3 \right )^4 \\= 16 \times \left ( n^3 \right )^4\\ = 16 \left ( n^3 \times 4 \right )\\ = 16 \left ( n^{12} \right )\\ = 16 n^{12}

 

\(\left ( 2n^3 \right )^4\\= \left ( 2 \times n^3 \right )^4 \\= \left ( 2 \times n^3 \right )^4\\= 2^4 \times \left ( n^3 \right )^4 \\= 16 \times \left ( n^3 \right )^4\\ = 16 \left ( n^3 \times 4 \right )\\ = 16 \left ( n^{12} \right )\\ = 16 n^{12}\)

Melody Apr 7, 2016

2 Online Users

avatar