+0  
 
0
68
2
avatar+4 

Hi! I need help with this problem:

 

a) Show that the ecvation 2sin(2x)/1-sin^2(x)=5 can convert  to tan(x)=1,25

b) Solv the ecvation tan(x)=1,25 fully

 

Best regards Gruffalo

Gruffalo  Sep 27, 2017
Sort: 

2+0 Answers

 #1
avatar+18610 
+4

2sin(2x)/1-sin^2(x)=5 can convert to tan(x)=1,25

 

 

a) Show that the equation \(\tfrac{2\sin(2x)} { 1-\sin^2(x) } = 5\) can convert  to tan(x)=1,25

\(\begin{array}{|rcll|} \hline \dfrac{2\sin(2x)} { 1-\sin^2(x) } &=& 5 \quad & | \quad : 2 \\\\ \dfrac{\sin(2x)} { 1-\sin^2(x) } &=& \frac{5}{2} \\\\ \dfrac{\sin(2x)} { 1-\sin^2(x) } &=&2.5 \quad & | \quad \sin(2x) = 2\sin(x)\cos(x) \\\\ \dfrac{2\sin(x)\cos(x)} { 1-\sin^2(x) } &=& 2.5 \quad & | \quad 1-\sin^2(x) = \cos^2(x) \\\\ \dfrac{2\sin(x)\cos(x)} { \cos^2(x) } &=& 2.5 \quad & | \quad : \cos(x) \\\\ \dfrac{2\sin(x)} { \cos(x) } &=& 2.5 \quad & | \quad : 2 \\\\ \dfrac{\sin(x)} { \cos(x) } &=& 1.25 \quad & | \quad \dfrac{\sin(x)} { \cos(x) } = \tan(x) \\\\ \tan(x) &=& 1.25 \\ \hline \end{array}\)

 

b) Solv the ecvation tan(x)=1,25 fully

\(\begin{array}{|rcll|} \hline \tan(x) &=& 1.25 \quad & | \quad \arctan() \text{ both sides }\\ x &=& \arctan(1.25) + n\cdot \pi \quad & \quad n \in Z \\ x &=& 51.3401917459^{\circ} + n\cdot \pi \quad & \quad n \in Z \\ \hline \end{array}\)

 

 

laugh

heureka  Sep 27, 2017
edited by heureka  Sep 27, 2017
 #2
avatar+76929 
+1

2sin (2x)

__________    =     5

1 - sin^2 (x)

 

 

2sin(x)cos(x)   

___________  =    5

cos^2(x)

 

2sin (x)

______         =     5

cos (x)

 

2tan(x)  =  5              divide both sides by 2

 

tan (x)   = 5/2    = 1.25

 

 

cool cool cool

CPhill  Sep 27, 2017

12 Online Users

avatar
avatar
We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  See details