+0  
 
0
471
2
avatar+4 

Hi! I need help with this problem:

 

a) Show that the ecvation 2sin(2x)/1-sin^2(x)=5 can convert  to tan(x)=1,25

b) Solv the ecvation tan(x)=1,25 fully

 

Best regards Gruffalo

Gruffalo  Sep 27, 2017
 #1
avatar+20011 
+4

2sin(2x)/1-sin^2(x)=5 can convert to tan(x)=1,25

 

 

a) Show that the equation \(\tfrac{2\sin(2x)} { 1-\sin^2(x) } = 5\) can convert  to tan(x)=1,25

\(\begin{array}{|rcll|} \hline \dfrac{2\sin(2x)} { 1-\sin^2(x) } &=& 5 \quad & | \quad : 2 \\\\ \dfrac{\sin(2x)} { 1-\sin^2(x) } &=& \frac{5}{2} \\\\ \dfrac{\sin(2x)} { 1-\sin^2(x) } &=&2.5 \quad & | \quad \sin(2x) = 2\sin(x)\cos(x) \\\\ \dfrac{2\sin(x)\cos(x)} { 1-\sin^2(x) } &=& 2.5 \quad & | \quad 1-\sin^2(x) = \cos^2(x) \\\\ \dfrac{2\sin(x)\cos(x)} { \cos^2(x) } &=& 2.5 \quad & | \quad : \cos(x) \\\\ \dfrac{2\sin(x)} { \cos(x) } &=& 2.5 \quad & | \quad : 2 \\\\ \dfrac{\sin(x)} { \cos(x) } &=& 1.25 \quad & | \quad \dfrac{\sin(x)} { \cos(x) } = \tan(x) \\\\ \tan(x) &=& 1.25 \\ \hline \end{array}\)

 

b) Solv the ecvation tan(x)=1,25 fully

\(\begin{array}{|rcll|} \hline \tan(x) &=& 1.25 \quad & | \quad \arctan() \text{ both sides }\\ x &=& \arctan(1.25) + n\cdot \pi \quad & \quad n \in Z \\ x &=& 51.3401917459^{\circ} + n\cdot \pi \quad & \quad n \in Z \\ \hline \end{array}\)

 

 

laugh

heureka  Sep 27, 2017
edited by heureka  Sep 27, 2017
 #2
avatar+88898 
+1

2sin (2x)

__________    =     5

1 - sin^2 (x)

 

 

2sin(x)cos(x)   

___________  =    5

cos^2(x)

 

2sin (x)

______         =     5

cos (x)

 

2tan(x)  =  5              divide both sides by 2

 

tan (x)   = 5/2    = 1.25

 

 

cool cool cool

CPhill  Sep 27, 2017

5 Online Users

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.