+0  
 
0
328
2
avatar+4 

Hi! I need help with this problem:

 

a) Show that the ecvation 2sin(2x)/1-sin^2(x)=5 can convert  to tan(x)=1,25

b) Solv the ecvation tan(x)=1,25 fully

 

Best regards Gruffalo

Gruffalo  Sep 27, 2017
Sort: 

2+0 Answers

 #1
avatar+19382 
+4

2sin(2x)/1-sin^2(x)=5 can convert to tan(x)=1,25

 

 

a) Show that the equation \(\tfrac{2\sin(2x)} { 1-\sin^2(x) } = 5\) can convert  to tan(x)=1,25

\(\begin{array}{|rcll|} \hline \dfrac{2\sin(2x)} { 1-\sin^2(x) } &=& 5 \quad & | \quad : 2 \\\\ \dfrac{\sin(2x)} { 1-\sin^2(x) } &=& \frac{5}{2} \\\\ \dfrac{\sin(2x)} { 1-\sin^2(x) } &=&2.5 \quad & | \quad \sin(2x) = 2\sin(x)\cos(x) \\\\ \dfrac{2\sin(x)\cos(x)} { 1-\sin^2(x) } &=& 2.5 \quad & | \quad 1-\sin^2(x) = \cos^2(x) \\\\ \dfrac{2\sin(x)\cos(x)} { \cos^2(x) } &=& 2.5 \quad & | \quad : \cos(x) \\\\ \dfrac{2\sin(x)} { \cos(x) } &=& 2.5 \quad & | \quad : 2 \\\\ \dfrac{\sin(x)} { \cos(x) } &=& 1.25 \quad & | \quad \dfrac{\sin(x)} { \cos(x) } = \tan(x) \\\\ \tan(x) &=& 1.25 \\ \hline \end{array}\)

 

b) Solv the ecvation tan(x)=1,25 fully

\(\begin{array}{|rcll|} \hline \tan(x) &=& 1.25 \quad & | \quad \arctan() \text{ both sides }\\ x &=& \arctan(1.25) + n\cdot \pi \quad & \quad n \in Z \\ x &=& 51.3401917459^{\circ} + n\cdot \pi \quad & \quad n \in Z \\ \hline \end{array}\)

 

 

laugh

heureka  Sep 27, 2017
edited by heureka  Sep 27, 2017
 #2
avatar+86649 
+1

2sin (2x)

__________    =     5

1 - sin^2 (x)

 

 

2sin(x)cos(x)   

___________  =    5

cos^2(x)

 

2sin (x)

______         =     5

cos (x)

 

2tan(x)  =  5              divide both sides by 2

 

tan (x)   = 5/2    = 1.25

 

 

cool cool cool

CPhill  Sep 27, 2017

9 Online Users

avatar
avatar

New Privacy Policy (May 2018)

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. Please click on "Accept cookies" if you agree to the setting of cookies. Cookies that do not require consent remain unaffected by this, see cookie policy and privacy policy.