+0  
 
0
586
2
avatar+4 

Hi! I need help with this problem:

 

a) Show that the ecvation 2sin(2x)/1-sin^2(x)=5 can convert  to tan(x)=1,25

b) Solv the ecvation tan(x)=1,25 fully

 

Best regards Gruffalo

 Sep 27, 2017
 #1
avatar+21295 
+4

2sin(2x)/1-sin^2(x)=5 can convert to tan(x)=1,25

 

 

a) Show that the equation \(\tfrac{2\sin(2x)} { 1-\sin^2(x) } = 5\) can convert  to tan(x)=1,25

\(\begin{array}{|rcll|} \hline \dfrac{2\sin(2x)} { 1-\sin^2(x) } &=& 5 \quad & | \quad : 2 \\\\ \dfrac{\sin(2x)} { 1-\sin^2(x) } &=& \frac{5}{2} \\\\ \dfrac{\sin(2x)} { 1-\sin^2(x) } &=&2.5 \quad & | \quad \sin(2x) = 2\sin(x)\cos(x) \\\\ \dfrac{2\sin(x)\cos(x)} { 1-\sin^2(x) } &=& 2.5 \quad & | \quad 1-\sin^2(x) = \cos^2(x) \\\\ \dfrac{2\sin(x)\cos(x)} { \cos^2(x) } &=& 2.5 \quad & | \quad : \cos(x) \\\\ \dfrac{2\sin(x)} { \cos(x) } &=& 2.5 \quad & | \quad : 2 \\\\ \dfrac{\sin(x)} { \cos(x) } &=& 1.25 \quad & | \quad \dfrac{\sin(x)} { \cos(x) } = \tan(x) \\\\ \tan(x) &=& 1.25 \\ \hline \end{array}\)

 

b) Solv the ecvation tan(x)=1,25 fully

\(\begin{array}{|rcll|} \hline \tan(x) &=& 1.25 \quad & | \quad \arctan() \text{ both sides }\\ x &=& \arctan(1.25) + n\cdot \pi \quad & \quad n \in Z \\ x &=& 51.3401917459^{\circ} + n\cdot \pi \quad & \quad n \in Z \\ \hline \end{array}\)

 

 

laugh

 Sep 27, 2017
edited by heureka  Sep 27, 2017
 #2
avatar+96106 
+1

2sin (2x)

__________    =     5

1 - sin^2 (x)

 

 

2sin(x)cos(x)   

___________  =    5

cos^2(x)

 

2sin (x)

______         =     5

cos (x)

 

2tan(x)  =  5              divide both sides by 2

 

tan (x)   = 5/2    = 1.25

 

 

cool cool cool

 Sep 27, 2017

33 Online Users

avatar
avatar
avatar
avatar
avatar
avatar
avatar
avatar
avatar
avatar

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.