$${\frac{\left({\mathtt{2}}{\mathtt{\,\times\,}}\left({\mathtt{4}}\right){\mathtt{\,\small\textbf+\,}}{\mathtt{4.6}}\right)}{\left({\mathtt{8}}{\mathtt{\,-\,}}{\mathtt{4}}\right)}}{\mathtt{\,\times\,}}{\mathtt{67}} = {\frac{{\mathtt{4\,221}}}{{\mathtt{20}}}} = {\mathtt{211.05}}$$ or $${\mathtt{2}}{\mathtt{\,\times\,}}\left({\mathtt{4}}\right){\mathtt{\,\small\textbf+\,}}{\frac{\left({\mathtt{4.6}}\right)}{\left({\mathtt{8}}{\mathtt{\,-\,}}{\mathtt{4}}\right)}}{\mathtt{\,\times\,}}{\mathtt{67}} = {\frac{{\mathtt{1\,701}}}{{\mathtt{20}}}} = {\mathtt{85.05}}$$, possibly $${\frac{\left({\mathtt{2}}{\mathtt{\,\times\,}}\left({\mathtt{4}}\right){\mathtt{\,\small\textbf+\,}}{\mathtt{4.6}}\right)}{\left({\mathtt{8}}{\mathtt{\,-\,}}{\mathtt{4}}{\mathtt{\,\times\,}}{\mathtt{67}}\right)}} = {\mathtt{\,-\,}}{\frac{{\mathtt{63}}}{{\mathtt{1\,300}}}} = -{\mathtt{0.048\: \!461\: \!538\: \!461\: \!538\: \!5}}$$ or $${\mathtt{2}}{\mathtt{\,\times\,}}\left({\mathtt{4}}\right){\mathtt{\,\small\textbf+\,}}{\frac{\left({\mathtt{4.6}}\right)}{\left({\mathtt{8}}{\mathtt{\,-\,}}{\mathtt{4}}{\mathtt{\,\times\,}}{\mathtt{67}}\right)}} = {\mathtt{7.982\: \!307\: \!692\: \!307\: \!692\: \!3}}$$
.$${\frac{\left({\mathtt{2}}{\mathtt{\,\times\,}}\left({\mathtt{4}}\right){\mathtt{\,\small\textbf+\,}}{\mathtt{4.6}}\right)}{\left({\mathtt{8}}{\mathtt{\,-\,}}{\mathtt{4}}\right)}}{\mathtt{\,\times\,}}{\mathtt{67}} = {\frac{{\mathtt{4\,221}}}{{\mathtt{20}}}} = {\mathtt{211.05}}$$ or $${\mathtt{2}}{\mathtt{\,\times\,}}\left({\mathtt{4}}\right){\mathtt{\,\small\textbf+\,}}{\frac{\left({\mathtt{4.6}}\right)}{\left({\mathtt{8}}{\mathtt{\,-\,}}{\mathtt{4}}\right)}}{\mathtt{\,\times\,}}{\mathtt{67}} = {\frac{{\mathtt{1\,701}}}{{\mathtt{20}}}} = {\mathtt{85.05}}$$, possibly $${\frac{\left({\mathtt{2}}{\mathtt{\,\times\,}}\left({\mathtt{4}}\right){\mathtt{\,\small\textbf+\,}}{\mathtt{4.6}}\right)}{\left({\mathtt{8}}{\mathtt{\,-\,}}{\mathtt{4}}{\mathtt{\,\times\,}}{\mathtt{67}}\right)}} = {\mathtt{\,-\,}}{\frac{{\mathtt{63}}}{{\mathtt{1\,300}}}} = -{\mathtt{0.048\: \!461\: \!538\: \!461\: \!538\: \!5}}$$ or $${\mathtt{2}}{\mathtt{\,\times\,}}\left({\mathtt{4}}\right){\mathtt{\,\small\textbf+\,}}{\frac{\left({\mathtt{4.6}}\right)}{\left({\mathtt{8}}{\mathtt{\,-\,}}{\mathtt{4}}{\mathtt{\,\times\,}}{\mathtt{67}}\right)}} = {\mathtt{7.982\: \!307\: \!692\: \!307\: \!692\: \!3}}$$