(–3/8 Log2(3/8)) + (– 5/8 Log2(5/8))=
(-3/8) [log2 3 - log2 8] + (-5/8) [log2 5 - log2 8] =
(-3/8) [log2 3 - 3] + (-5/8) [ log2 5 - 3] =
-3 [ -3/8 -5/8] - [ (3/8) log2 3 + (5/8) log2 5 ] =
3 - [ 1/8)] * [ 3 log2 3 + 5 log2 5 ] =
3 - [1/8] * [ log2 3^3 + log2 5^5] =
3 - [1/8] * [ log2 27 + log2 3125] =
3 - [1/8] * [log2 (27 * 3125)] =
3 - [log2 84375] / 8 =
[24 - log2 84375 ] / 8 =
[about 0.954434]
This answer has been modified,
Thanks CPhill and Alan for letting me know of my careless error :))
(–3/8 Log2(3/8)) + (– 5/8 Log2(5/8)) =
$$\\(-\frac{3}{8}Log_2(\frac{3}{8})) + (-\frac{5}{8} Log_2(\frac{5}{8})) \\\\
=-\frac{1}{8}[3Log_2(\frac{3}{8}) + 5 Log_2(\frac{5}{8})] \\\\
=-\frac{1}{8}[Log_2(\frac{3}{8})^3 + Log_2(\frac{5}{8})^5] \\\\
=-\frac{1}{8}[Log_2((\frac{3}{8})^3*(\frac{5}{8})^5 )] \\\\
=-\frac{1}{8}[Log_2(\frac{(3^3*5^5)}{8^8})] \\\\
=-\frac{1}{8}[Log_2 (3^3*5^5)-Log_2 8^8] \\\\
=-\frac{1}{8}[Log_2 (27*3125)-8Log_2 8] \\\\
=-\frac{1}{8}[Log_2 (84375)-8Log_2 2^3]\\\\
=-\frac{1}{8}[Log_2 (84375)-24Log_2 2]\\\\
=-\frac{1}{8}[Log_2 (84375)-24]\\\\
=3-\frac{[Log_2 (84375)]}{8}\\\\$$
This is the same as Chris's answer below. :)
The question is finished but if you want an approximation ...
this can be entered into the web 2 calc like this
3-log(84375,2)/8
$${\mathtt{3}}{\mathtt{\,-\,}}{\frac{{{log}}_{{\mathtt{2}}}{\left({\mathtt{84\,375}}\right)}}{{\mathtt{8}}}} = {\mathtt{0.954\: \!434\: \!002\: \!924\: \!964\: \!7}}$$
Most calcs only do base 10 or base e so this is how you would do it on one of those (uaing change of base rule)
3-(log(84375)/log(2))/8
$${\mathtt{3}}{\mathtt{\,-\,}}{\frac{\left({\frac{{log}_{10}\left({\mathtt{84\,375}}\right)}{{log}_{10}\left({\mathtt{2}}\right)}}\right)}{{\mathtt{8}}}} = {\mathtt{0.954\: \!434\: \!002\: \!924\: \!964\: \!9}}$$
(–3/8 Log2(3/8)) + (– 5/8 Log2(5/8))=
(-3/8) [log2 3 - log2 8] + (-5/8) [log2 5 - log2 8] =
(-3/8) [log2 3 - 3] + (-5/8) [ log2 5 - 3] =
-3 [ -3/8 -5/8] - [ (3/8) log2 3 + (5/8) log2 5 ] =
3 - [ 1/8)] * [ 3 log2 3 + 5 log2 5 ] =
3 - [1/8] * [ log2 3^3 + log2 5^5] =
3 - [1/8] * [ log2 27 + log2 3125] =
3 - [1/8] * [log2 (27 * 3125)] =
3 - [log2 84375] / 8 =
[24 - log2 84375 ] / 8 =
[about 0.954434]