+0  
 
0
629
1
avatar

3cosx-4sinx=1

math trigonometry
Guest Aug 25, 2014

Best Answer 

 #1
avatar+91001 
+5

There are a number of different ways to do a question like this.  Here are some ideas.

http://www.thestudentroom.co.uk/showthread.php?t=1586679

ok now I will give it a go.

$$\begin{array}{rlll}
cos^2\theta+sin^2\theta&=&1\\
cos\theta&=&\sqrt{1-sin^2\theta\\\\
3cosx-4sinx &=&1\\
3\sqrt{1-sin^2x}-4sinx &=&1\qquad &\mbox{ }\\
3\sqrt{1-sin^2x} &=&1+4sinx\qquad &\mbox{Square both sides }\\
9\times(1-sin^2x) &=&1+8sinx+16sin^2x\qquad &\mbox{}\\
9-9sin^2x &=&1+8sinx+16sin^2x\qquad &\mbox{}\\
0 &=&-8+8sinx+25sin^2x\qquad &\mbox{}\\
25sin^2x+8sinx-8 &=&0\qquad &\mbox{}\\
Let \;y=sinx&\\
25y^2+8y-8 &=&0\qquad &\mbox{}\\
y&=&\frac{-8\pm \sqrt{64+800}}{50}\\
sinx&=&\frac{-8\pm \sqrt{16*9*6}}{50}\\
sinx&=&\frac{-8\pm 12\sqrt{6}}{50}\\

\end{array}$$

 

$$\underset{\,\,\,\,^{\textcolor[rgb]{0.66,0.66,0.66}{360^\circ}}}{{sin}}^{\!\!\mathtt{-1}}{\left({\frac{\left({\mathtt{\,-\,}}{\mathtt{8}}{\mathtt{\,-\,}}{\sqrt{{\mathtt{864}}}}\right)}{{\mathtt{50}}}}\right)} = -{\mathtt{48.406\: \!856\: \!678\: \!66^{\circ}}}$$

 

$$\underset{\,\,\,\,^{\textcolor[rgb]{0.66,0.66,0.66}{360^\circ}}}{{sin}}^{\!\!\mathtt{-1}}{\left({\frac{\left({\mathtt{\,-\,}}{\mathtt{8}}{\mathtt{\,\small\textbf+\,}}{\sqrt{{\mathtt{864}}}}\right)}{{\mathtt{50}}}}\right)} = {\mathtt{25.332\: \!938\: \!613\: \!029^{\circ}}}$$

 

These answers should be checked by substituting them back into the original equation but I am going to leave that to you. (I'm too tired)   

Melody  Aug 25, 2014
Sort: 

1+0 Answers

 #1
avatar+91001 
+5
Best Answer

There are a number of different ways to do a question like this.  Here are some ideas.

http://www.thestudentroom.co.uk/showthread.php?t=1586679

ok now I will give it a go.

$$\begin{array}{rlll}
cos^2\theta+sin^2\theta&=&1\\
cos\theta&=&\sqrt{1-sin^2\theta\\\\
3cosx-4sinx &=&1\\
3\sqrt{1-sin^2x}-4sinx &=&1\qquad &\mbox{ }\\
3\sqrt{1-sin^2x} &=&1+4sinx\qquad &\mbox{Square both sides }\\
9\times(1-sin^2x) &=&1+8sinx+16sin^2x\qquad &\mbox{}\\
9-9sin^2x &=&1+8sinx+16sin^2x\qquad &\mbox{}\\
0 &=&-8+8sinx+25sin^2x\qquad &\mbox{}\\
25sin^2x+8sinx-8 &=&0\qquad &\mbox{}\\
Let \;y=sinx&\\
25y^2+8y-8 &=&0\qquad &\mbox{}\\
y&=&\frac{-8\pm \sqrt{64+800}}{50}\\
sinx&=&\frac{-8\pm \sqrt{16*9*6}}{50}\\
sinx&=&\frac{-8\pm 12\sqrt{6}}{50}\\

\end{array}$$

 

$$\underset{\,\,\,\,^{\textcolor[rgb]{0.66,0.66,0.66}{360^\circ}}}{{sin}}^{\!\!\mathtt{-1}}{\left({\frac{\left({\mathtt{\,-\,}}{\mathtt{8}}{\mathtt{\,-\,}}{\sqrt{{\mathtt{864}}}}\right)}{{\mathtt{50}}}}\right)} = -{\mathtt{48.406\: \!856\: \!678\: \!66^{\circ}}}$$

 

$$\underset{\,\,\,\,^{\textcolor[rgb]{0.66,0.66,0.66}{360^\circ}}}{{sin}}^{\!\!\mathtt{-1}}{\left({\frac{\left({\mathtt{\,-\,}}{\mathtt{8}}{\mathtt{\,\small\textbf+\,}}{\sqrt{{\mathtt{864}}}}\right)}{{\mathtt{50}}}}\right)} = {\mathtt{25.332\: \!938\: \!613\: \!029^{\circ}}}$$

 

These answers should be checked by substituting them back into the original equation but I am going to leave that to you. (I'm too tired)   

Melody  Aug 25, 2014

8 Online Users

We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  See details