+0  
 
-1
41
2
avatar

Let APQRS be a pyramid, where the base PQRS is a square of side length 30. The total surface area of pyramid APQRS (including the base) is 1100. Let W, X, Y, and Z be the midpoints of AP, AQ, AR, and AS respectively. Find the total surface area of frustum PQRSWXYZ (including the bases).

 Jan 12, 2021
 #1
avatar+114361 
0

 

The base of the original pyramid=   30^2 = 900

 

The sides of  the pyramid  are  4 congruent triangles  with  bases of 30  and a slant height = S

 

We can figure the slant height of the original pyramid, S , as

 

Then the area of the sides  =  1100   - 900   = 200

 

Connecting the  midpoints  of    AP, AQ, AR. AS  will form a  similar pyramid to  the original

 

The scale factor of this pyramid to  the original  =  1/2

 

So.....the total   surface area of  this pyramid  =  (scale factor)^2  * 1100 =  1100/4 = 275

 

The base of  this new pyramid =  15^2  = 225

 

So the surface area of the 4 sides of this new pyramid = 275 - 225  = 50

 

So  the  sides of the  frustum created have a surface area of    200  - 50 =   150

 

So....the total surface  area of the  furstum  = 

 

Area of bottom base  +  area of sides  + area of top base  = 

 

Area of bottom base  + area of sides +  area of the base of the  new pyramid =  

 

900  +  150  +   225   =  

 

1275  units^2

 

 

cool cool cool

 Jan 12, 2021
 #2
avatar+861 
+2

Hello, Guest!

 

Such a pyramid is impossible!!! cheeky

 

The total slant area of a pyramid cannot be smaller than the area of its base!!!

 

Make sure that your numbers are correct.

 Jan 12, 2021
edited by jugoslav  Jan 12, 2021

23 Online Users

avatar
avatar