+0  
 
0
310
5
avatar

(3x^3-5x^2+10x-3)/(3x-4)

Guest Aug 17, 2015

Best Answer 

 #2
avatar+78643 
+10

Using polynomial division, we have

 

                           x^2   - (1/3)x  + (26/9)

3x - 4     [ 3x^3  - 5x^2  + 10x    -  3]

                3x^3  - 4x^2

                ------------------

                          -1x^2  + 10x

                          -1x^2  +(4/3)x

                          -------------------

                                        (26/3)x  - 3

                                        (26/3)x  - (104/9)

                                        ---------------------

                                                        (77/9)

 

So.....the answer is..........  [ x^2   - (1/3)x  + (26/9) ] +  [ 77/9]/[3x - 4]

 

 

 

CPhill  Aug 18, 2015
Sort: 

5+0 Answers

 #1
avatar
0

-3/(-4 + 3 x) + (10 x)/(-4 + 3 x) + (-5 x^2)/(-4 + 3 x) + (3 x^3)/(-4 + 3 x)

(-3 + x (10 + x (-5 + 3 x)))/(-4 + 3 x)

(3 - 10 x + 5 x^2 - 3 x^3)/(4 - 3 x)

Guest Aug 18, 2015
 #2
avatar+78643 
+10
Best Answer

Using polynomial division, we have

 

                           x^2   - (1/3)x  + (26/9)

3x - 4     [ 3x^3  - 5x^2  + 10x    -  3]

                3x^3  - 4x^2

                ------------------

                          -1x^2  + 10x

                          -1x^2  +(4/3)x

                          -------------------

                                        (26/3)x  - 3

                                        (26/3)x  - (104/9)

                                        ---------------------

                                                        (77/9)

 

So.....the answer is..........  [ x^2   - (1/3)x  + (26/9) ] +  [ 77/9]/[3x - 4]

 

 

 

CPhill  Aug 18, 2015
 #3
avatar+91038 
0

Very nice presentation Chris :)

Melody  Aug 18, 2015
 #4
avatar+18714 
+5

(3x^3-5x^2+10x-3)/(3x-4)

 

In mathematics, Horner's method (also known as Horner scheme in the UK or Horner's rule in the U.S.) an algorithm for calculating polynomials

see:  https://en.wikipedia.org/wiki/Horner%27s_method#cite_note-HornerRule-2

$$\small{
\begin{array}{lrrl}
& f_1{(x)} &=& 3x^3-5x^2+10x-3\\
& f_2{(x)} &=& 3x-4\\
&\text{Divide } f_1{(x)} \text{ by } f_2{(x)} \text{ using Honer's method }
\end{array}
}$$

$$\small{\text{$
\begin{array}{r|crcrcrc|r}
3 &\quad& 3 &\quad& -5 &\quad& 10 &\quad& -3 \\
\hline
&&&&&&&\\
4 &\quad& &\quad& 4 &\quad& -\dfrac{4}{3} &\quad& 4\cdot \dfrac{26}{9}\\
\hline
&&&&&&&\\
&\quad& 1 &\quad& -1\cdot \dfrac{1}{3} &\quad&\dfrac{26}{3}\cdot \dfrac{1}{3} &\quad & \dfrac{77}{9}
\end{array}
$}}$$

 

$$1\cdot x^2 - \dfrac{1}{3}\cdot x + \dfrac{26}{9}
+ \dfrac{77}{9(3x-4)}$$

 

 

 

heureka  Aug 18, 2015
 #5
avatar+91038 
+3

Thanks Heureka.   I have not seen Horner's Method before      

 

I have included this thread in our Reference Material Sticky Topic.  

Melody  Aug 18, 2015

16 Online Users

avatar
avatar
avatar
We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  See details