+0  
 
0
585
5
avatar

(3x^3-5x^2+10x-3)/(3x-4)

Guest Aug 17, 2015

Best Answer 

 #2
avatar+90088 
+10

Using polynomial division, we have

 

                           x^2   - (1/3)x  + (26/9)

3x - 4     [ 3x^3  - 5x^2  + 10x    -  3]

                3x^3  - 4x^2

                ------------------

                          -1x^2  + 10x

                          -1x^2  +(4/3)x

                          -------------------

                                        (26/3)x  - 3

                                        (26/3)x  - (104/9)

                                        ---------------------

                                                        (77/9)

 

So.....the answer is..........  [ x^2   - (1/3)x  + (26/9) ] +  [ 77/9]/[3x - 4]

 

 

 

CPhill  Aug 18, 2015
 #1
avatar
0

-3/(-4 + 3 x) + (10 x)/(-4 + 3 x) + (-5 x^2)/(-4 + 3 x) + (3 x^3)/(-4 + 3 x)

(-3 + x (10 + x (-5 + 3 x)))/(-4 + 3 x)

(3 - 10 x + 5 x^2 - 3 x^3)/(4 - 3 x)

Guest Aug 18, 2015
 #2
avatar+90088 
+10
Best Answer

Using polynomial division, we have

 

                           x^2   - (1/3)x  + (26/9)

3x - 4     [ 3x^3  - 5x^2  + 10x    -  3]

                3x^3  - 4x^2

                ------------------

                          -1x^2  + 10x

                          -1x^2  +(4/3)x

                          -------------------

                                        (26/3)x  - 3

                                        (26/3)x  - (104/9)

                                        ---------------------

                                                        (77/9)

 

So.....the answer is..........  [ x^2   - (1/3)x  + (26/9) ] +  [ 77/9]/[3x - 4]

 

 

 

CPhill  Aug 18, 2015
 #3
avatar+93691 
0

Very nice presentation Chris :)

Melody  Aug 18, 2015
 #4
avatar+20035 
+5

(3x^3-5x^2+10x-3)/(3x-4)

 

In mathematics, Horner's method (also known as Horner scheme in the UK or Horner's rule in the U.S.) an algorithm for calculating polynomials

see:  https://en.wikipedia.org/wiki/Horner%27s_method#cite_note-HornerRule-2

$$\small{
\begin{array}{lrrl}
& f_1{(x)} &=& 3x^3-5x^2+10x-3\\
& f_2{(x)} &=& 3x-4\\
&\text{Divide } f_1{(x)} \text{ by } f_2{(x)} \text{ using Honer's method }
\end{array}
}$$

$$\small{\text{$
\begin{array}{r|crcrcrc|r}
3 &\quad& 3 &\quad& -5 &\quad& 10 &\quad& -3 \\
\hline
&&&&&&&\\
4 &\quad& &\quad& 4 &\quad& -\dfrac{4}{3} &\quad& 4\cdot \dfrac{26}{9}\\
\hline
&&&&&&&\\
&\quad& 1 &\quad& -1\cdot \dfrac{1}{3} &\quad&\dfrac{26}{3}\cdot \dfrac{1}{3} &\quad & \dfrac{77}{9}
\end{array}
$}}$$

 

$$1\cdot x^2 - \dfrac{1}{3}\cdot x + \dfrac{26}{9}
+ \dfrac{77}{9(3x-4)}$$

 

 

 

heureka  Aug 18, 2015
 #5
avatar+93691 
+3

Thanks Heureka.   I have not seen Horner's Method before      

 

I have included this thread in our Reference Material Sticky Topic.  

Melody  Aug 18, 2015

19 Online Users

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.