1) Find a direction vector
\(\mathbf{d} = \begin{pmatrix}d_1 \\ d_2 \\d_3 \end{pmatrix}\)
for the line through \(B = (1, 1, 2)\) and C= (2, 3, 1) such that \(d_1 + d_2 + d_3 = 10\)
2) Let u,v and w be vectors satisfying
\(\mathbf{u}\bullet \mathbf{v} = 3, \mathbf{u} \bullet \mathbf{w} = 4, \mathbf{v} \bullet \mathbf{w} = 5.\)
Then what ae
\(\mathbf{u} + 2 \mathbf{v})\bullet \mathbf{w}, (\mathbf{w} - \mathbf{u})\bullet \mathbf{v}, (3\mathbf{v} - 2 \mathbf{w})\bullet \mathbf{u}\)
equal to? Enter the list in the order above.
3) Consider the vectors \(\mathbf{v} = \begin{pmatrix} 1\\2\\1 \end{pmatrix}, \mathbf{w} = \begin{pmatrix} 1\\4 \\5 \end{pmatrix}\), and \(\mathbf{x} = \begin{pmatrix}-1 \\ 6 \\ 15\end{pmatrix}\)
If the vectors v.w and x aren't linearly independent, find coefficients a,b and c, not all 0, such that
\(a\begin{pmatrix} 1\\2\\1 \end{pmatrix}+b \begin{pmatrix} 1\\4 \\5 \end{pmatrix} + c\begin{pmatrix}-1 \\ 6 \\ 15\end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}\)
and answer with \(\dfrac{a-b}{c}\).
4)If there exists a matrix A such that
\(\mathbf{A} \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}, \mathbf{A} \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} = \begin{pmatrix} -3 \\ 4 \\ 0 \end{pmatrix}, \mathbf{A} \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} = \begin{pmatrix} -2 \\ 6 \\ 3 \end{pmatrix}\)
calculate \(\mathbf{A} \begin{pmatrix} 1 \\ -1 \\ -1 \end{pmatrix}\)
2.
( u + 2v) (dot) w =
u (dot) w + 2v (dot) w =
4 + 2(v (dot) w) =
4 + 2( 5) = 10
(w - u) (dot ) v =
w(dot)v - u(dot)v =
5 - 3 = 2
(3v - 2w)(dot) u =
3v (dot)u - 2w (dot) u =
3 [ v (dot) u ] - 2 [ w (dot) u ] =
3 [3] - 2[4] =
9 - 8 = 1
So
( u + 2v) (dot) w , (w - u) (dot ) v , (3v - 2w)(dot) u = 10, 2 , 1