45,300 at 21% compounded monthly for 8 3/4 years
compounded monthly
\(\begin{array}{lcll} K_{n} &=& K_0 \cdot (1 + \frac{i}{12} )^n \qquad n = \text{Number of the months} \\\\ K_{n} &=& K_0 \cdot (1 + \frac{i}{12} )^n \qquad K_0 = $45300 \quad i=21\% \quad n = 8\cdot 12 + \frac34 \cdot 12 = 105 \\ K_{105} &=& 45300 \cdot (1 + \frac{\frac{21}{100}}{12} )^{105} \\ K_{105} &=& 45300 \cdot (1 + \frac{21}{100\cdot 12} )^{105} \\ K_{105} &=& 45300 \cdot (1 + 0.01750000000 )^{105} \\ K_{105} &=& 45300 \cdot (1.01750000000 )^{105} \\ K_{105} &=& 45300 \cdot 6.18178475531 \\ \mathbf{K_{105}} & \mathbf{=} & \mathbf{$280034.849416} \\ \end{array}\)
45,300 at 21% compounded monthly for 8 3/4 years
The FV of 45,300 @21% for 8 3/4 years will be worth=$280,034.85.
The formula you use for this is FV=PV (1 + R)^N, where FV=Future value, PV=Present Value, R=Interest rate per period, N=Number of periods.
45,300 at 21% compounded monthly for 8 3/4 years
compounded monthly
\(\begin{array}{lcll} K_{n} &=& K_0 \cdot (1 + \frac{i}{12} )^n \qquad n = \text{Number of the months} \\\\ K_{n} &=& K_0 \cdot (1 + \frac{i}{12} )^n \qquad K_0 = $45300 \quad i=21\% \quad n = 8\cdot 12 + \frac34 \cdot 12 = 105 \\ K_{105} &=& 45300 \cdot (1 + \frac{\frac{21}{100}}{12} )^{105} \\ K_{105} &=& 45300 \cdot (1 + \frac{21}{100\cdot 12} )^{105} \\ K_{105} &=& 45300 \cdot (1 + 0.01750000000 )^{105} \\ K_{105} &=& 45300 \cdot (1.01750000000 )^{105} \\ K_{105} &=& 45300 \cdot 6.18178475531 \\ \mathbf{K_{105}} & \mathbf{=} & \mathbf{$280034.849416} \\ \end{array}\)