4i6+3i1−2i−(9+4i)= ? i2=−1i4=i2⋅i2=(−1)⋅(−1)=1i6=i2⋅i2⋅i2=(−1)⋅(−1)⋅(−1)=−1
we set
i6=(−1)3=−1
so we have:
4i6+3i1−2i−(9+4i)|i6=−1 =−4+3i1−2i−(9+4i) =(−4+3i)\codt(1+2i)(1−2i)\codt(1+2i)−(9+4i)|(a−ib)⋅(a+ib)=a2+b2 =(−4+3i)\codt(1+2i)12+22−(9+4i) =(−4+3i)\codt(1+2i)5−(9+4i) =(−4+3i)\codt(1+2i)5−5⋅(9+4i)5 =(−4+3i)\codt(1+2i)−5\codt(9+4i)5 =−4−8i+3i+6i2−45−20i5|i2=−1 =−4−8i+3i+6⋅(−1)−45−20i5 =−4−8i+3i−6−45−20i5 we put together =−55−25i5 =−11−5i
Remember that i2= -1
i6=(i2)3 ; do this first ,combine like terms and then multply by the conjugate of the denominator, (1+2i).
Should be simple after that, keep combining like terms. I got -11-3i.
4i6+3i1−2i−(9+4i)= ? i2=−1i4=i2⋅i2=(−1)⋅(−1)=1i6=i2⋅i2⋅i2=(−1)⋅(−1)⋅(−1)=−1
we set
i6=(−1)3=−1
so we have:
4i6+3i1−2i−(9+4i)|i6=−1 =−4+3i1−2i−(9+4i) =(−4+3i)\codt(1+2i)(1−2i)\codt(1+2i)−(9+4i)|(a−ib)⋅(a+ib)=a2+b2 =(−4+3i)\codt(1+2i)12+22−(9+4i) =(−4+3i)\codt(1+2i)5−(9+4i) =(−4+3i)\codt(1+2i)5−5⋅(9+4i)5 =(−4+3i)\codt(1+2i)−5\codt(9+4i)5 =−4−8i+3i+6i2−45−20i5|i2=−1 =−4−8i+3i+6⋅(−1)−45−20i5 =−4−8i+3i−6−45−20i5 we put together =−55−25i5 =−11−5i