Loading [MathJax]/jax/output/SVG/jax.js
 
+0  
 
0
1081
2
avatar

((4[i6]+3i)(12i))(9+4i)=???

 Mar 8, 2015

Best Answer 

 #2
avatar+26397 
+5

 4i6+3i12i(9+4i)= ?  i2=1i4=i2i2=(1)(1)=1i6=i2i2i2=(1)(1)(1)=1 

we set

i6=(1)3=1

so we have:

 4i6+3i12i(9+4i)|i6=1  =4+3i12i(9+4i)  =(4+3i)\codt(1+2i)(12i)\codt(1+2i)(9+4i)|(aib)(a+ib)=a2+b2  =(4+3i)\codt(1+2i)12+22(9+4i)  =(4+3i)\codt(1+2i)5(9+4i)  =(4+3i)\codt(1+2i)55(9+4i)5  =(4+3i)\codt(1+2i)5\codt(9+4i)5  =48i+3i+6i24520i5|i2=1  =48i+3i+6(1)4520i5  =48i+3i64520i5 we put together  =5525i5  =115i 

.
 Mar 8, 2015
 #1
avatar
+5

Remember that i2= -1

i6=(i2)3 ; do this first ,combine like terms and then multply by the conjugate of the denominator, (1+2i).

Should be simple after that, keep combining like terms. I got -11-3i.

 Mar 8, 2015
 #2
avatar+26397 
+5
Best Answer

 4i6+3i12i(9+4i)= ?  i2=1i4=i2i2=(1)(1)=1i6=i2i2i2=(1)(1)(1)=1 

we set

i6=(1)3=1

so we have:

 4i6+3i12i(9+4i)|i6=1  =4+3i12i(9+4i)  =(4+3i)\codt(1+2i)(12i)\codt(1+2i)(9+4i)|(aib)(a+ib)=a2+b2  =(4+3i)\codt(1+2i)12+22(9+4i)  =(4+3i)\codt(1+2i)5(9+4i)  =(4+3i)\codt(1+2i)55(9+4i)5  =(4+3i)\codt(1+2i)5\codt(9+4i)5  =48i+3i+6i24520i5|i2=1  =48i+3i+6(1)4520i5  =48i+3i64520i5 we put together  =5525i5  =115i 

heureka Mar 8, 2015

1 Online Users

avatar