+0  
 
0
229
2
avatar+10 

I need help with this one, is by the method of Undetermined Coefficients.

Maybe you can explain to me... 

4y''+9y=15

SBonilla  May 9, 2018
 #1
avatar+20009 
+2

I need help with this one, is by the method of Undetermined Coefficients.

Maybe you can explain to me... 

4y''+9y=15

\(ay''+by=c\)

 

2 th-order differential equation: \(4y''+9y=15\)

 

1. characteristic equation:

\(\begin{array}{|rcll|} \hline 4\lambda^2 + 9 &=& 0 \\ 4\lambda^2 &=& -9 \\ \lambda^2 &=& -\frac{9}{4} \\ \lambda^2 &=& \frac{9}{4} \cdot(-1) \\ \lambda &=& \pm \frac{3}{2} i \\ \mathbf{\lambda} & \mathbf{=} & \mathbf{ \underbrace{0}_{=\alpha} \pm \underbrace{\frac{3}{2}}_{=\beta} i } \\ \hline \end{array}\)

 

2. Homogeneous Equations \(y_h =\ ?\)

\(\large{ \begin{array}{|rcll|} \hline y_h & =& e^{\alpha\cdot x}\Big(c_1\sin(\beta x)+c_2\cos(\beta x) \Big) \quad & | \quad \lambda \text{ complex!} \\ &=& e^{0\cdot x}\Big(c_1\sin(\frac{3}{2} x)+c_2\cos(\frac{3}{2} x) \Big) \\ \mathbf{y_h} &\mathbf{=}& \mathbf{ c_1\sin(\frac{3}{2} x)+c_2\cos(\frac{3}{2} x) }\\ \hline \end{array} } \)

 

3. Particular Solutions \(y_p = \ ?\)

\(\begin{array}{|rcll|} \hline y_p = c \qquad y_p^{'} = 0 \qquad y_p^{''} = 0 \\\\ 4y_p^{''}+9y_p &=& 15 \\ 4\cdot 0 +9 \cdot c &=& 15 \\ 9 \cdot c &=& 15 \\ c &=& \frac{15}{9} \\ \mathbf{c=y_p} &\mathbf{=}& \mathbf{\frac{5}{3}} \\ \hline \end{array} \)

 

4. \(y(x) = \ ?\)

\(\begin{array}{|rcll|} \hline y(x) &=& y_h + y_p \\ \mathbf{y(x)} &\mathbf{=}& \mathbf{ c_1\sin(\frac{3}{2} x)+c_2\cos(\frac{3}{2} x) + \frac{5}{3} } \\ \hline \end{array}\)

 

laugh

heureka  May 9, 2018
 #2
avatar+10 
0

Thank you ! laugh

SBonilla  May 9, 2018

28 Online Users

avatar

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.