We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
0
1
825
2
avatar+10 

I need help with this one, is by the method of Undetermined Coefficients.

Maybe you can explain to me... 

4y''+9y=15

 May 9, 2018
 #1
avatar+22581 
+2

I need help with this one, is by the method of Undetermined Coefficients.

Maybe you can explain to me... 

4y''+9y=15

\(ay''+by=c\)

 

2 th-order differential equation: \(4y''+9y=15\)

 

1. characteristic equation:

\(\begin{array}{|rcll|} \hline 4\lambda^2 + 9 &=& 0 \\ 4\lambda^2 &=& -9 \\ \lambda^2 &=& -\frac{9}{4} \\ \lambda^2 &=& \frac{9}{4} \cdot(-1) \\ \lambda &=& \pm \frac{3}{2} i \\ \mathbf{\lambda} & \mathbf{=} & \mathbf{ \underbrace{0}_{=\alpha} \pm \underbrace{\frac{3}{2}}_{=\beta} i } \\ \hline \end{array}\)

 

2. Homogeneous Equations \(y_h =\ ?\)

\(\large{ \begin{array}{|rcll|} \hline y_h & =& e^{\alpha\cdot x}\Big(c_1\sin(\beta x)+c_2\cos(\beta x) \Big) \quad & | \quad \lambda \text{ complex!} \\ &=& e^{0\cdot x}\Big(c_1\sin(\frac{3}{2} x)+c_2\cos(\frac{3}{2} x) \Big) \\ \mathbf{y_h} &\mathbf{=}& \mathbf{ c_1\sin(\frac{3}{2} x)+c_2\cos(\frac{3}{2} x) }\\ \hline \end{array} } \)

 

3. Particular Solutions \(y_p = \ ?\)

\(\begin{array}{|rcll|} \hline y_p = c \qquad y_p^{'} = 0 \qquad y_p^{''} = 0 \\\\ 4y_p^{''}+9y_p &=& 15 \\ 4\cdot 0 +9 \cdot c &=& 15 \\ 9 \cdot c &=& 15 \\ c &=& \frac{15}{9} \\ \mathbf{c=y_p} &\mathbf{=}& \mathbf{\frac{5}{3}} \\ \hline \end{array} \)

 

4. \(y(x) = \ ?\)

\(\begin{array}{|rcll|} \hline y(x) &=& y_h + y_p \\ \mathbf{y(x)} &\mathbf{=}& \mathbf{ c_1\sin(\frac{3}{2} x)+c_2\cos(\frac{3}{2} x) + \frac{5}{3} } \\ \hline \end{array}\)

 

laugh

 May 9, 2018
 #2
avatar+10 
0

Thank you ! laugh

SBonilla  May 9, 2018

11 Online Users