+0

# 5^0/5^-6 x 1/5^-11 / (5^2)4/(5^10)2 =

0
510
3

5^0/5^-6 x 1/5^-11 / (5^2)4/(5^10)2 =

Guest Jun 20, 2015

#3
+92221
+10

Thanks Sir-Emo-Chappington and Alan

We could get  a job writing multiple choice answers.

We only have 3 answers so far - Someone should offer a 4th.         Any takers

5^0/5^-6 x 1/5^-11 / (5^2)4/(5^10)2 =

$$\\\frac{5^0}{5^{-6}} \times 1/(5^{-11}) / (5^2)\times 4/(5^{10})\times 2 \\\\ =1*5^6 /(5^{-11}) / (5^2)\times 4/(5^{10})\times 2 \\\\ =(5^6) *(5^{11}) / (5^2)\times 4/(5^{10})\times 2 \\\\ =\frac{(5^6) *(5^{11}) }{(5^2)}\times 4/(5^{10})\times 2 \\\\ =\frac{4*(5^6) *(5^{11}) }{(5^2)}/(5^{10})\times 2 \\\\ =\frac{4*(5^6) *(5^{11}) }{(5^2)*(5^{10})}\times 2 \\\\ =\frac{2*4*(5^6) *(5^{11}) }{(5^2)*(5^{10})} \\\\ =\frac{8*(5^{17}) }{(5^{12})} \\\\ =8*(5^{5}) } \\\\$$

$${\mathtt{8}}{\mathtt{\,\times\,}}{{\mathtt{5}}}^{{\mathtt{5}}} = {\mathtt{25\,000}}$$

Melody  Jun 21, 2015
Sort:

#1
+423
+5

There's quite a lot of different ways of interpretting this question, so apologies if I got this incorrect.

I ordered it around in the way that looked most logical to me:

[[5/ 5-6]*[1 / 5-11]] / [[(52)*4 / (510)*2]]

$${\frac{\left[{\frac{{{\mathtt{5}}}^{{\mathtt{0}}}}{{{\mathtt{5}}}^{-{\mathtt{6}}}}}\right]{\mathtt{\,\times\,}}\left[{\frac{{\mathtt{1}}}{{{\mathtt{5}}}^{-{\mathtt{11}}}}}\right]}{\left[{\frac{\left({{\mathtt{5}}}^{{\mathtt{2}}}\right){\mathtt{\,\times\,}}{\mathtt{4}}}{\left[\left({{\mathtt{5}}}^{{\mathtt{10}}}\right){\mathtt{\,\times\,}}{\mathtt{2}}\right]}}\right]}}$$

Some quick formulae to explain my workings:

x0 = 1

x-y = 1 / xy

1 / (1/x) = x

xy * xz = xy+z

So this equation is = [(1 / (1/56)) * (1 / (1/511))] / [(52*4) / (510*2)]

= [56 * 511] / [(52*4) / (510*2)]

= 517 / [(52*4) / (510*2)]

= 762939453125 / [(25*4) / 9765625*2]

= 762939453125 / 0.00000512

= 149011611938476562.5

= 1.49 * 1017

Of course I could read it without assuming any of what I did, and just work on the basic principles of what order you should do each function (however even then I must assume where each power "ends", since otherwise you have a crazy looking equation), in which case I get:

5/ 5-6*1 / 5-11 / 52*4 / 510*2

$${\frac{\left({\frac{\left({\frac{\left({\frac{{{\mathtt{5}}}^{{\mathtt{0}}}}{\left({{\mathtt{5}}}^{{\mathtt{6}}}{\mathtt{\,\times\,}}{\mathtt{1}}\right)}}\right)}{{{\mathtt{5}}}^{{\mathtt{11}}}}}\right)}{\left(\left({{\mathtt{5}}}^{{\mathtt{2}}}\right){\mathtt{\,\times\,}}{\mathtt{4}}\right)}}\right)}{\left(\left({{\mathtt{5}}}^{{\mathtt{10}}}\right){\mathtt{\,\times\,}}{\mathtt{2}}\right)}}$$

= 5/ 5-6 / 5-11 / 52*4 / 510*2

= (((1 / 0.000064) / 0.00000002048) / 100) / 19531250

= ((15625 / 0.00000002048) / 100) / 19531250

= (762939453125 / 100) / 19531250

= 7629394531.25 / 19531250

390.625

If I truly do not assume anything ends, then what I get is:

$${{\mathtt{5}}}^{\left({\frac{{\mathtt{0}}}{{{\mathtt{5}}}^{{\mathtt{\,-\,}}\left({\frac{{\mathtt{6}}{\mathtt{\,\times\,}}{\mathtt{1}}}{{{\mathtt{5}}}^{{\mathtt{\,-\,}}\left({\frac{{\mathtt{11}}}{\left({\frac{{{\mathtt{5}}}^{\left({\mathtt{2}}\right)}{\mathtt{\,\times\,}}{\mathtt{4}}}{\left({{\mathtt{5}}}^{\left({\mathtt{10}}\right)}{\mathtt{\,\times\,}}{\mathtt{2}}\right)}}\right)}}\right)}}}\right)}}}\right)}$$

Which has a fraction with 0 on top, so in short ends up as 50 = 1

Sir-Emo-Chappington  Jun 20, 2015
#2
+26640
+10

.

Alan  Jun 21, 2015
#3
+92221
+10

Thanks Sir-Emo-Chappington and Alan

We could get  a job writing multiple choice answers.

We only have 3 answers so far - Someone should offer a 4th.         Any takers

5^0/5^-6 x 1/5^-11 / (5^2)4/(5^10)2 =

$$\\\frac{5^0}{5^{-6}} \times 1/(5^{-11}) / (5^2)\times 4/(5^{10})\times 2 \\\\ =1*5^6 /(5^{-11}) / (5^2)\times 4/(5^{10})\times 2 \\\\ =(5^6) *(5^{11}) / (5^2)\times 4/(5^{10})\times 2 \\\\ =\frac{(5^6) *(5^{11}) }{(5^2)}\times 4/(5^{10})\times 2 \\\\ =\frac{4*(5^6) *(5^{11}) }{(5^2)}/(5^{10})\times 2 \\\\ =\frac{4*(5^6) *(5^{11}) }{(5^2)*(5^{10})}\times 2 \\\\ =\frac{2*4*(5^6) *(5^{11}) }{(5^2)*(5^{10})} \\\\ =\frac{8*(5^{17}) }{(5^{12})} \\\\ =8*(5^{5}) } \\\\$$

$${\mathtt{8}}{\mathtt{\,\times\,}}{{\mathtt{5}}}^{{\mathtt{5}}} = {\mathtt{25\,000}}$$

Melody  Jun 21, 2015

### 17 Online Users

We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  See details