+0  
 
0
2564
1
avatar

.55 = log(x)

 Sep 17, 2014

Best Answer 

 #1
avatar+5478 
+28

This problem states that log base 10 (x) equals 0.55, so take the corresponding exponential equation.

For example:

 

$${{log}}_{{\mathtt{2}}}{\left({\mathtt{8}}\right)} = {\mathtt{3}}$$

 

$${{\mathtt{2}}}^{{\mathtt{3}}} = {\mathtt{8}}$$

 

So since the problem's equation is:

 

$${{log}}_{{\mathtt{10}}}{\left({\mathtt{x}}\right)} = {\mathtt{0.55}}$$

 

Then:

 

$${{\mathtt{10}}}^{{\mathtt{0.55}}} = {\mathtt{x}}$$

 

x = $${{\mathtt{10}}}^{{\mathtt{0.55}}} = {\mathtt{3.548\: \!133\: \!892\: \!335\: \!754\: \!6}}$$

 Sep 17, 2014
 #1
avatar+5478 
+28
Best Answer

This problem states that log base 10 (x) equals 0.55, so take the corresponding exponential equation.

For example:

 

$${{log}}_{{\mathtt{2}}}{\left({\mathtt{8}}\right)} = {\mathtt{3}}$$

 

$${{\mathtt{2}}}^{{\mathtt{3}}} = {\mathtt{8}}$$

 

So since the problem's equation is:

 

$${{log}}_{{\mathtt{10}}}{\left({\mathtt{x}}\right)} = {\mathtt{0.55}}$$

 

Then:

 

$${{\mathtt{10}}}^{{\mathtt{0.55}}} = {\mathtt{x}}$$

 

x = $${{\mathtt{10}}}^{{\mathtt{0.55}}} = {\mathtt{3.548\: \!133\: \!892\: \!335\: \!754\: \!6}}$$

kitty<3 Sep 17, 2014

0 Online Users