Compute the fifth derivative with respect to x:
[Sin[x]Log[x]. Thanks for help.
I'm assuming that Log (x) is base 10
This can get a little messy.....here's WolframAlpha's answer........
https://www.wolframalpha.com/input/?i=fifth+derivative++%5Bsin+(x)+*+Log+(x)%5D&rawformassumption=%7B%22FunClash%22,+%22Log%22%7D+-%3E+%7B%22Log10%22%7D
or if it is log base e
y=exsinx y′=exsinx+excosx y″=exsinx+excosx+excosx−exsinxy″=2excosx y‴=2excosx−2exsinxy‴=2ex(cosx−sinx)y⁗=2ex(cosx−sinx)+2ex(−sinx−cosx)y⁗=2ex(cosx−sinx−sinx−cosx)y⁗=−4exsinxy′′′′′=−4y′=−4ex(sinx+cosx)
If the log base is "e" ....it's more simple......but still a little messy
5th derivative of f(x) = sin x * ln (x)
It will be the same answer as before except that we will not have any logs in the denominators :
d^5/dx^5(sin(x) log(x)) = (24 sin(x))/x^5 - (30 cos(x))/x^4 - (20 sin(x))/x^3 + (10 cos(x))/x^2 + (5 sin(x))/x + log(x) cos(x)
See Wolfram's computation, here :
https://www.wolframalpha.com/input/?i=fifth+derivative+%5B+sin+x+*+ln+(x)+%5D