+0  
 
0
999
3
avatar

5x+2/2=2x-1

 May 12, 2015

Best Answer 

 #3
avatar+980 
+8

I did consider this.

$$\frac{5x+2}{2}=2x-1$$

 

$$5x+2=2{(2x-1)}$$

 

$$5x+2=4x-2$$

 

$$x=-4$$

 May 12, 2015
 #1
avatar+980 
+5

$$5x+\frac{2}{2}=2x-1$$

 

$$5x+1=2x-1$$

 

$$5x=2x-2$$

 

$$3x=-2$$

 

$$x=\frac{-2}{3}$$

.
 May 12, 2015
 #2
avatar+223 
+5

Nice work Zacismyname!!!

But is it possible that  there is a couple of brackets missing?

$${\frac{\left({\mathtt{5}}{\mathtt{\,\times\,}}{\mathtt{x}}{\mathtt{\,\small\textbf+\,}}{\mathtt{2}}\right)}{{\mathtt{2}}}} = {\mathtt{4}}{\mathtt{\,\times\,}}{\mathtt{x}}{\mathtt{\,-\,}}{\mathtt{2}}$$       multiplie all terms with 2 in order to remove the denominator on the left side.

$${\mathtt{5}}{\mathtt{\,\times\,}}{\mathtt{x}}{\mathtt{\,\small\textbf+\,}}{\mathtt{2}} = {\mathtt{4}}{\mathtt{\,\times\,}}{\mathtt{x}}{\mathtt{\,-\,}}{\mathtt{2}}$$     get all x to the left side and all terms without x on the other side.

$$\left({\mathtt{5}}{\mathtt{\,\times\,}}{\mathtt{x}}{\mathtt{\,\small\textbf+\,}}{\mathtt{2}}\right){\mathtt{\,-\,}}{\mathtt{4}}{\mathtt{\,\times\,}}{\mathtt{x}}{\mathtt{\,-\,}}{\mathtt{2}} = \left({\mathtt{4}}{\mathtt{\,\times\,}}{\mathtt{x}}{\mathtt{\,-\,}}{\mathtt{2}}\right){\mathtt{\,-\,}}{\mathtt{4}}{\mathtt{\,\times\,}}{\mathtt{x}}{\mathtt{\,-\,}}{\mathtt{2}}$$

 

Good luck

 May 12, 2015
 #3
avatar+980 
+8
Best Answer

I did consider this.

$$\frac{5x+2}{2}=2x-1$$

 

$$5x+2=2{(2x-1)}$$

 

$$5x+2=4x-2$$

 

$$x=-4$$

zacismyname May 12, 2015

0 Online Users