+0  
 
0
643
1
avatar

5x_2 -60x+15=0 what is x up to 2 dp?

 Feb 11, 2015

Best Answer 

 #1
avatar+129845 
+5

 

 

 

5x^2 -60x+15=0      divide through by 5

x^2 - 12x + 3  = 0    this won't factor, but it does have real solutions

Using the onsite solver, we have

$${{\mathtt{x}}}^{{\mathtt{2}}}{\mathtt{\,-\,}}{\mathtt{12}}{\mathtt{\,\times\,}}{\mathtt{x}}{\mathtt{\,\small\textbf+\,}}{\mathtt{3}} = {\mathtt{0}} \Rightarrow \left\{ \begin{array}{l}{\mathtt{x}} = {\mathtt{6}}{\mathtt{\,-\,}}{\sqrt{{\mathtt{33}}}}\\
{\mathtt{x}} = {\sqrt{{\mathtt{33}}}}{\mathtt{\,\small\textbf+\,}}{\mathtt{6}}\\
\end{array} \right\} \Rightarrow \left\{ \begin{array}{l}{\mathtt{x}} = {\mathtt{0.255\: \!437\: \!353\: \!461\: \!971\: \!3}}\\
{\mathtt{x}} = {\mathtt{11.744\: \!562\: \!646\: \!538\: \!028\: \!7}}\\
\end{array} \right\}$$

So, to 2 dp ...we have.....x = .26   and x = 11.74

 

 Feb 11, 2015
 #1
avatar+129845 
+5
Best Answer

 

 

 

5x^2 -60x+15=0      divide through by 5

x^2 - 12x + 3  = 0    this won't factor, but it does have real solutions

Using the onsite solver, we have

$${{\mathtt{x}}}^{{\mathtt{2}}}{\mathtt{\,-\,}}{\mathtt{12}}{\mathtt{\,\times\,}}{\mathtt{x}}{\mathtt{\,\small\textbf+\,}}{\mathtt{3}} = {\mathtt{0}} \Rightarrow \left\{ \begin{array}{l}{\mathtt{x}} = {\mathtt{6}}{\mathtt{\,-\,}}{\sqrt{{\mathtt{33}}}}\\
{\mathtt{x}} = {\sqrt{{\mathtt{33}}}}{\mathtt{\,\small\textbf+\,}}{\mathtt{6}}\\
\end{array} \right\} \Rightarrow \left\{ \begin{array}{l}{\mathtt{x}} = {\mathtt{0.255\: \!437\: \!353\: \!461\: \!971\: \!3}}\\
{\mathtt{x}} = {\mathtt{11.744\: \!562\: \!646\: \!538\: \!028\: \!7}}\\
\end{array} \right\}$$

So, to 2 dp ...we have.....x = .26   and x = 11.74

 

CPhill Feb 11, 2015

0 Online Users