+0  
 
0
466
1
avatar

∫〖(7+x+3x^2)/(x+x^3 ) dx〗

Guest May 21, 2015

Best Answer 

 #1
avatar+92623 
+10

I just lost a huge page of LaTex.    

Anyway I'll give you the abridged version.

I will expand on it if you need me too.      

I split the numerator up to give me 3 seperate fractions to integrate.

 

$$\\\int \frac{x}{x+x^3}=\int \frac{1}{1+x^2}=atan(x)\\\\
\frac{7}{x+x^3} $ can be broken up using partial fractions into$\\\\\
\frac{7}{x}+\frac{-7x}{1+x^2}\qquad $ I can expand on this if you need me too$\\\\
$so our integral becomes$\\\\
\int\;\frac{7}{x}+\frac{-7x}{1+x^2}+\frac{1}{1+x^2}+\frac{3x}{1+x^2}\;dx\\\\
=\int\;\frac{7}{x}+\frac{-4x}{1+x^2}+\frac{1}{1+x^2}\;dx\\\\
=7ln(x)-2ln(1+x^2)+tan^{-1}(x)+c$$

 

I think that is correct.  

Melody  May 21, 2015
 #1
avatar+92623 
+10
Best Answer

I just lost a huge page of LaTex.    

Anyway I'll give you the abridged version.

I will expand on it if you need me too.      

I split the numerator up to give me 3 seperate fractions to integrate.

 

$$\\\int \frac{x}{x+x^3}=\int \frac{1}{1+x^2}=atan(x)\\\\
\frac{7}{x+x^3} $ can be broken up using partial fractions into$\\\\\
\frac{7}{x}+\frac{-7x}{1+x^2}\qquad $ I can expand on this if you need me too$\\\\
$so our integral becomes$\\\\
\int\;\frac{7}{x}+\frac{-7x}{1+x^2}+\frac{1}{1+x^2}+\frac{3x}{1+x^2}\;dx\\\\
=\int\;\frac{7}{x}+\frac{-4x}{1+x^2}+\frac{1}{1+x^2}\;dx\\\\
=7ln(x)-2ln(1+x^2)+tan^{-1}(x)+c$$

 

I think that is correct.  

Melody  May 21, 2015

19 Online Users

avatar
avatar

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.