A 1.85kg block is held in equilibrium on an incline of angle θ = 67.7° by a horizontal force, F, applied in the horizontal direction. If the coefficient of static friction between block and incline μs = 0.256, determine the minimum value of F.
Resolve the forces perpendicular and parallel to the surface of the incline. They must separately be balanced.
Perpendicular
N = 1.85*9.8*cos(67.7°) + F*sin(67.7°) ...(1) N is normal force, gravitational accn = 9.8m/s2
Parallel
0.256*N + F*cos(67.7°) = 1.85*9.8*sin(67.7°) ...(2)
Use (1) in (2)
0.256*(1.85*9.8*cos(67.7°) + F*sin(67.7°)) + F*cos(67.7°) = 1.85*9.8*sin(67.7°)
F*(0.256*sin(67.7°) + cos(67.7°)) = 1.85*9.8*(sin(67.7°) - 0.256*cos(67.7°) )
F = 1.85*9.8*(sin(67.7°) - 0.256*cos(67.7°) )/(0.256*sin(67.7°) + cos(67.7°))
F=1.85×9.8×(sin360∘(67.7∘)−0.256×cos360∘(67.7∘))(0.256×sin360∘(67.7∘)+cos360∘(67.7∘))⇒F=24.3593218130477813
F ≈ 24.4 Newtons
Resolve the forces perpendicular and parallel to the surface of the incline. They must separately be balanced.
Perpendicular
N = 1.85*9.8*cos(67.7°) + F*sin(67.7°) ...(1) N is normal force, gravitational accn = 9.8m/s2
Parallel
0.256*N + F*cos(67.7°) = 1.85*9.8*sin(67.7°) ...(2)
Use (1) in (2)
0.256*(1.85*9.8*cos(67.7°) + F*sin(67.7°)) + F*cos(67.7°) = 1.85*9.8*sin(67.7°)
F*(0.256*sin(67.7°) + cos(67.7°)) = 1.85*9.8*(sin(67.7°) - 0.256*cos(67.7°) )
F = 1.85*9.8*(sin(67.7°) - 0.256*cos(67.7°) )/(0.256*sin(67.7°) + cos(67.7°))
F=1.85×9.8×(sin360∘(67.7∘)−0.256×cos360∘(67.7∘))(0.256×sin360∘(67.7∘)+cos360∘(67.7∘))⇒F=24.3593218130477813
F ≈ 24.4 Newtons