+0

# A 1.85kg block is held in equilibrium on an incline of angle θ = 67.7° by a horizontal force, F, applied in the horizontal direction. If the

0
4
1015
1

A 1.85kg block is held in equilibrium on an incline of angle θ = 67.7° by a horizontal force, F, applied in the horizontal direction. If the coefficient of static friction between block and incline μs = 0.256, determine the minimum value of F.

physics
Guest Oct 2, 2014

#1
+26640
+5

Resolve the forces perpendicular and parallel to the surface of the incline.  They must separately be balanced.

Perpendicular

N =  1.85*9.8*cos(67.7°) + F*sin(67.7°)   ...(1)    N is normal force, gravitational accn = 9.8m/s2

Parallel

0.256*N + F*cos(67.7°) = 1.85*9.8*sin(67.7°) ...(2)

Use (1) in (2)
0.256*(1.85*9.8*cos(67.7°) + F*sin(67.7°)) + F*cos(67.7°) = 1.85*9.8*sin(67.7°)

F*(0.256*sin(67.7°) + cos(67.7°)) = 1.85*9.8*(sin(67.7°) - 0.256*cos(67.7°) )

F = 1.85*9.8*(sin(67.7°) - 0.256*cos(67.7°) )/(0.256*sin(67.7°) + cos(67.7°))

$${\mathtt{F}} = {\frac{{\mathtt{1.85}}{\mathtt{\,\times\,}}{\mathtt{9.8}}{\mathtt{\,\times\,}}\left(\underset{\,\,\,\,^{{360^\circ}}}{{sin}}{\left({\mathtt{67.7}}^\circ\right)}{\mathtt{\,-\,}}{\mathtt{0.256}}{\mathtt{\,\times\,}}\underset{\,\,\,\,^{{360^\circ}}}{{cos}}{\left({\mathtt{67.7}}^\circ\right)}\right)}{\left({\mathtt{0.256}}{\mathtt{\,\times\,}}\underset{\,\,\,\,^{{360^\circ}}}{{sin}}{\left({\mathtt{67.7}}^\circ\right)}{\mathtt{\,\small\textbf+\,}}\underset{\,\,\,\,^{{360^\circ}}}{{cos}}{\left({\mathtt{67.7}}^\circ\right)}\right)}} \Rightarrow {\mathtt{F}} = {\mathtt{24.359\: \!321\: \!813\: \!047\: \!781\: \!3}}$$

F ≈ 24.4 Newtons

Alan  Oct 2, 2014
Sort:

#1
+26640
+5

Resolve the forces perpendicular and parallel to the surface of the incline.  They must separately be balanced.

Perpendicular

N =  1.85*9.8*cos(67.7°) + F*sin(67.7°)   ...(1)    N is normal force, gravitational accn = 9.8m/s2

Parallel

0.256*N + F*cos(67.7°) = 1.85*9.8*sin(67.7°) ...(2)

Use (1) in (2)
0.256*(1.85*9.8*cos(67.7°) + F*sin(67.7°)) + F*cos(67.7°) = 1.85*9.8*sin(67.7°)

F*(0.256*sin(67.7°) + cos(67.7°)) = 1.85*9.8*(sin(67.7°) - 0.256*cos(67.7°) )

F = 1.85*9.8*(sin(67.7°) - 0.256*cos(67.7°) )/(0.256*sin(67.7°) + cos(67.7°))

$${\mathtt{F}} = {\frac{{\mathtt{1.85}}{\mathtt{\,\times\,}}{\mathtt{9.8}}{\mathtt{\,\times\,}}\left(\underset{\,\,\,\,^{{360^\circ}}}{{sin}}{\left({\mathtt{67.7}}^\circ\right)}{\mathtt{\,-\,}}{\mathtt{0.256}}{\mathtt{\,\times\,}}\underset{\,\,\,\,^{{360^\circ}}}{{cos}}{\left({\mathtt{67.7}}^\circ\right)}\right)}{\left({\mathtt{0.256}}{\mathtt{\,\times\,}}\underset{\,\,\,\,^{{360^\circ}}}{{sin}}{\left({\mathtt{67.7}}^\circ\right)}{\mathtt{\,\small\textbf+\,}}\underset{\,\,\,\,^{{360^\circ}}}{{cos}}{\left({\mathtt{67.7}}^\circ\right)}\right)}} \Rightarrow {\mathtt{F}} = {\mathtt{24.359\: \!321\: \!813\: \!047\: \!781\: \!3}}$$

F ≈ 24.4 Newtons

Alan  Oct 2, 2014

### 31 Online Users

We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  See details