+0  
 
0
1359
1
avatar

A 15-g sample of radioactive iodine decays in such a way that the mass remaining after t days is given by 

m(t) = 15e 0.071t,

 where 

m(t)

 is measured in grams. After how many days is there only 1 g remaining?

Guest Jul 9, 2014

Best Answer 

 #1
avatar+93866 
+5

m(t) = 15e −0.071t

 

$$\begin{array}{rll}
m(t)&=&15e^{-0.071t}\\\\
1&=&15e^{-0.071t}\\\\
\frac{1}{15}&=&e^{-0.071t}\\\\
ln^{\frac{1}{15}}&=&ln{e^{-0.071t}}\\\\
ln^{\frac{1}{15}}&=&-0.071t\\\\
\frac{ln^{\frac{1}{15}}}{-0.071}&=&t\\\\
t&=&\frac{ln^{\frac{1}{15}}}{-0.071}\\\\


\end{array}$$

 

$${\frac{{ln}{\left({\frac{{\mathtt{1}}}{{\mathtt{15}}}}\right)}}{-{\mathtt{0.071}}}} = {\mathtt{38.141\: \!552\: \!128\: \!200\: \!140\: \!8}}$$

 

So in 38 days there will be just over 1g left.

In 39 days there will be less than 39 grams left.

Melody  Jul 13, 2014
 #1
avatar+93866 
+5
Best Answer

m(t) = 15e −0.071t

 

$$\begin{array}{rll}
m(t)&=&15e^{-0.071t}\\\\
1&=&15e^{-0.071t}\\\\
\frac{1}{15}&=&e^{-0.071t}\\\\
ln^{\frac{1}{15}}&=&ln{e^{-0.071t}}\\\\
ln^{\frac{1}{15}}&=&-0.071t\\\\
\frac{ln^{\frac{1}{15}}}{-0.071}&=&t\\\\
t&=&\frac{ln^{\frac{1}{15}}}{-0.071}\\\\


\end{array}$$

 

$${\frac{{ln}{\left({\frac{{\mathtt{1}}}{{\mathtt{15}}}}\right)}}{-{\mathtt{0.071}}}} = {\mathtt{38.141\: \!552\: \!128\: \!200\: \!140\: \!8}}$$

 

So in 38 days there will be just over 1g left.

In 39 days there will be less than 39 grams left.

Melody  Jul 13, 2014

12 Online Users

avatar
avatar

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.