+0  
 
0
662
3
avatar

a^2 + b^2 = 20 ab + 6b = 32 what are all the pairs (a; b)

Guest Apr 22, 2015

Best Answer 

 #2
avatar+92808 
+10

 

ab + 6b = 32    →  b(a + 6)  = 32  →   b = 32/(a + 6)   (2)

Substitue (2) into (1) and we  have

a^2 + [32/(a + 6)]^2  = 20      simplify

a^2(a + 6)^2 + 1024 = 20(a+6)^2

a^2(a^2 + 12a + 36) + 1024 = 20a^2 + 240a + 720

a^4 + 12a^3 + 36a^2 + 1024 = 20a^2 + 240a + 720

a^4 + 12a^3 + 16a^2 - 240a + 304  = 0

Using the on site solver we have one real soution for a

 

$${{\mathtt{a}}}^{{\mathtt{4}}}{\mathtt{\,\small\textbf+\,}}{\mathtt{12}}{\mathtt{\,\times\,}}{{\mathtt{a}}}^{{\mathtt{3}}}{\mathtt{\,\small\textbf+\,}}{\mathtt{16}}{\mathtt{\,\times\,}}{{\mathtt{a}}}^{{\mathtt{2}}}{\mathtt{\,-\,}}{\mathtt{240}}{\mathtt{\,\times\,}}{\mathtt{a}}{\mathtt{\,\small\textbf+\,}}{\mathtt{304}} = {\mathtt{0}} \Rightarrow \left\{ \begin{array}{l}{\mathtt{a}} = {\mathtt{\,-\,}}{\mathtt{2}}{\mathtt{\,\times\,}}{\sqrt{{\mathtt{3}}}}{\mathtt{\,\times\,}}{i}{\mathtt{\,-\,}}{\mathtt{8}}\\
{\mathtt{a}} = {\mathtt{2}}{\mathtt{\,\times\,}}{\sqrt{{\mathtt{3}}}}{\mathtt{\,\times\,}}{i}{\mathtt{\,-\,}}{\mathtt{8}}\\
{\mathtt{a}} = {\mathtt{2}}\\
\end{array} \right\} \Rightarrow \left\{ \begin{array}{l}{\mathtt{a}} = {\mathtt{\,-\,}}{\mathtt{8}}{\mathtt{\,-\,}}{\mathtt{3.464\: \!101\: \!615\: \!137\: \!754\: \!6}}{i}\\
{\mathtt{a}} = {\mathtt{\,-\,}}{\mathtt{8}}{\mathtt{\,\small\textbf+\,}}{\mathtt{3.464\: \!101\: \!615\: \!137\: \!754\: \!6}}{i}\\
{\mathtt{a}} = {\mathtt{2}}\\
\end{array} \right\}$$

And b =

32 /(a + 6)   = 32 /(2 + 6)  =  32 /8   = 4

 

  

CPhill  Apr 22, 2015
 #1
avatar+27229 
+10

You can do this on the calculator here using the "Equation" mode:

 Input

 

 Output

 

.

Alan  Apr 22, 2015
 #2
avatar+92808 
+10
Best Answer

 

ab + 6b = 32    →  b(a + 6)  = 32  →   b = 32/(a + 6)   (2)

Substitue (2) into (1) and we  have

a^2 + [32/(a + 6)]^2  = 20      simplify

a^2(a + 6)^2 + 1024 = 20(a+6)^2

a^2(a^2 + 12a + 36) + 1024 = 20a^2 + 240a + 720

a^4 + 12a^3 + 36a^2 + 1024 = 20a^2 + 240a + 720

a^4 + 12a^3 + 16a^2 - 240a + 304  = 0

Using the on site solver we have one real soution for a

 

$${{\mathtt{a}}}^{{\mathtt{4}}}{\mathtt{\,\small\textbf+\,}}{\mathtt{12}}{\mathtt{\,\times\,}}{{\mathtt{a}}}^{{\mathtt{3}}}{\mathtt{\,\small\textbf+\,}}{\mathtt{16}}{\mathtt{\,\times\,}}{{\mathtt{a}}}^{{\mathtt{2}}}{\mathtt{\,-\,}}{\mathtt{240}}{\mathtt{\,\times\,}}{\mathtt{a}}{\mathtt{\,\small\textbf+\,}}{\mathtt{304}} = {\mathtt{0}} \Rightarrow \left\{ \begin{array}{l}{\mathtt{a}} = {\mathtt{\,-\,}}{\mathtt{2}}{\mathtt{\,\times\,}}{\sqrt{{\mathtt{3}}}}{\mathtt{\,\times\,}}{i}{\mathtt{\,-\,}}{\mathtt{8}}\\
{\mathtt{a}} = {\mathtt{2}}{\mathtt{\,\times\,}}{\sqrt{{\mathtt{3}}}}{\mathtt{\,\times\,}}{i}{\mathtt{\,-\,}}{\mathtt{8}}\\
{\mathtt{a}} = {\mathtt{2}}\\
\end{array} \right\} \Rightarrow \left\{ \begin{array}{l}{\mathtt{a}} = {\mathtt{\,-\,}}{\mathtt{8}}{\mathtt{\,-\,}}{\mathtt{3.464\: \!101\: \!615\: \!137\: \!754\: \!6}}{i}\\
{\mathtt{a}} = {\mathtt{\,-\,}}{\mathtt{8}}{\mathtt{\,\small\textbf+\,}}{\mathtt{3.464\: \!101\: \!615\: \!137\: \!754\: \!6}}{i}\\
{\mathtt{a}} = {\mathtt{2}}\\
\end{array} \right\}$$

And b =

32 /(a + 6)   = 32 /(2 + 6)  =  32 /8   = 4

 

  

CPhill  Apr 22, 2015
 #3
avatar+94120 
0

Thanks Alan and CPhill    

A very nice display from each of you.:)

Melody  Apr 23, 2015

9 Online Users

avatar

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.