+0  
 
0
428
2
avatar
a+b=4ab b+c=5bc c+a=3ac
Guest Mar 1, 2015

Best Answer 

 #2
avatar+26625 
+5

Another approach to this is to divide through by the product on the right-hand side of each equation, so that we get:

 

1/b + 1/a = 4

1/c + 1/b = 5

1/a + 1/c = 3

 

Now let A = 1/a, B = 1/b and C = 1/c, so the equations become

B + A = 4            (1)

C + B = 5            (2)

A + C = 3            (3)

 

Subtract (3) from (2) to get B - A = 2

Add this to (1) to get 2B = 6 so B = 3, so b = 1/3

 

Put B back into (1) to get A = 1, so a = 1

 

Put B back into (2) to get C = 2, so c  = 1/2

.

Alan  Mar 2, 2015
Sort: 

2+0 Answers

 #1
avatar+85644 
+5

 

 

a+b=4ab   b+c=5bc   c+a=3ac

a= b(4a - 1)     a = c(3a - 1)

b = a/(4a -1)  c = a/(3a -1)

b + c = 5bc

a/(4a -1) + a/(3a -1)  = 5a^2/[(4a -1)(3a -1)]

[a(3a -1) + a(4a -1)]/ [(4a -1)(3a -1)]  = 5a^2/[(4a -1)(3a -1)]

3a^2 - a + 4a^2 - a  = 5a^2

2a^2 - 2a = 0

a^2 - a = 0

So

a(a -1) = 0     0 is trivial....so a = 1

So  b = a/[4(a) -1] = 1 / [4(1) -1] = 1/3 

And  c = a/[3(a) -1] = 1 /[3(1)-1] = 1/2

Check

a + b = 1 + 1/3 = 4/3 = 4ab =4(1)(1/3) = 4/3  

b + c = 1/2 + 1/3  = 5/6 =5bc = 5(1/3)(1/2) = 5/6

a + c = 1 + 1/2 = 3/2 = 3ac = 3(1)(1/2) = 3/2

 

CPhill  Mar 1, 2015
 #2
avatar+26625 
+5
Best Answer

Another approach to this is to divide through by the product on the right-hand side of each equation, so that we get:

 

1/b + 1/a = 4

1/c + 1/b = 5

1/a + 1/c = 3

 

Now let A = 1/a, B = 1/b and C = 1/c, so the equations become

B + A = 4            (1)

C + B = 5            (2)

A + C = 3            (3)

 

Subtract (3) from (2) to get B - A = 2

Add this to (1) to get 2B = 6 so B = 3, so b = 1/3

 

Put B back into (1) to get A = 1, so a = 1

 

Put B back into (2) to get C = 2, so c  = 1/2

.

Alan  Mar 2, 2015

14 Online Users

We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  See details