+0  
 
0
664
2
avatar
a+b=4ab b+c=5bc c+a=3ac
 Mar 1, 2015

Best Answer 

 #2
avatar+27310 
+5

Another approach to this is to divide through by the product on the right-hand side of each equation, so that we get:

 

1/b + 1/a = 4

1/c + 1/b = 5

1/a + 1/c = 3

 

Now let A = 1/a, B = 1/b and C = 1/c, so the equations become

B + A = 4            (1)

C + B = 5            (2)

A + C = 3            (3)

 

Subtract (3) from (2) to get B - A = 2

Add this to (1) to get 2B = 6 so B = 3, so b = 1/3

 

Put B back into (1) to get A = 1, so a = 1

 

Put B back into (2) to get C = 2, so c  = 1/2

.

 Mar 2, 2015
 #1
avatar+94235 
+5

 

 

a+b=4ab   b+c=5bc   c+a=3ac

a= b(4a - 1)     a = c(3a - 1)

b = a/(4a -1)  c = a/(3a -1)

b + c = 5bc

a/(4a -1) + a/(3a -1)  = 5a^2/[(4a -1)(3a -1)]

[a(3a -1) + a(4a -1)]/ [(4a -1)(3a -1)]  = 5a^2/[(4a -1)(3a -1)]

3a^2 - a + 4a^2 - a  = 5a^2

2a^2 - 2a = 0

a^2 - a = 0

So

a(a -1) = 0     0 is trivial....so a = 1

So  b = a/[4(a) -1] = 1 / [4(1) -1] = 1/3 

And  c = a/[3(a) -1] = 1 /[3(1)-1] = 1/2

Check

a + b = 1 + 1/3 = 4/3 = 4ab =4(1)(1/3) = 4/3  

b + c = 1/2 + 1/3  = 5/6 =5bc = 5(1/3)(1/2) = 5/6

a + c = 1 + 1/2 = 3/2 = 3ac = 3(1)(1/2) = 3/2

 

 Mar 1, 2015
 #2
avatar+27310 
+5
Best Answer

Another approach to this is to divide through by the product on the right-hand side of each equation, so that we get:

 

1/b + 1/a = 4

1/c + 1/b = 5

1/a + 1/c = 3

 

Now let A = 1/a, B = 1/b and C = 1/c, so the equations become

B + A = 4            (1)

C + B = 5            (2)

A + C = 3            (3)

 

Subtract (3) from (2) to get B - A = 2

Add this to (1) to get 2B = 6 so B = 3, so b = 1/3

 

Put B back into (1) to get A = 1, so a = 1

 

Put B back into (2) to get C = 2, so c  = 1/2

.

Alan Mar 2, 2015

34 Online Users

avatar
avatar
avatar
avatar
avatar
avatar
avatar
avatar
avatar

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.