Loading [MathJax]/jax/output/SVG/jax.js
 
+0  
 
0
2348
1
avatar+647 

 

Enter (A,B,C) in order below if A, B, and C are the coefficients of the partial fractions expansion of 2(x2+x1)x(x21)=Ax+Bx1+Cx+1.
 

 Mar 9, 2018
 #1
avatar+26396 
0

Enter (A,B,C) in order below if A, B, and C are the coefficients of the partial fractions expansion of 

2(x2+x1)x(x21)=Ax+Bx1+Cx+1.
 \frac{2(x^2+x-1)}{x(x^2-1)} = \frac{A}{x} + \frac{B}{x-1} + \frac{C}{x+1}.

 

 

2(x2+x1)x(x21)=2(x2+x1)x(x1)(x+1)2(x2+x1)x(x1)(x+1)=Ax+B(x1)+C(x+1)|x(x1)(x+1)2(x2+x1)=Ax(x1)(x+1)x+Bx(x1)(x+1)(x1)+Cx(x1)(x+1)(x+1)2(x2+x1)=A(x1)(x+1)+Bx(x+1)+Cx(x1)

 

x=0:2(0+01)=A(01)(0+1)+B0(0+1)+C0(01)2=AA=2x=1:2(1+11)=A(11)(1+1)+B1(1+1)+C1(11)2=A0(1+1)+B1(1+1)+C102=2BB=1x=1:2(111)=A(11)(1+1)+B(1)(1+1)+C(1)(11)2=A(11)0+B(1)0+C(1)(11)2=2CC=1

 

(A,B,C)=(2,1,1)

 

laugh

 Mar 9, 2018

0 Online Users