Enter (A,B,C) in order below if A, B, and C are the coefficients of the partial fractions expansion of 2(x2+x−1)x(x2−1)=Ax+Bx−1+Cx+1.
Enter (A,B,C) in order below if A, B, and C are the coefficients of the partial fractions expansion of
2(x2+x−1)x(x2−1)=Ax+Bx−1+Cx+1.
\frac{2(x^2+x-1)}{x(x^2-1)} = \frac{A}{x} + \frac{B}{x-1} + \frac{C}{x+1}.
2(x2+x−1)x(x2−1)=2(x2+x−1)x(x−1)(x+1)2(x2+x−1)x(x−1)(x+1)=Ax+B(x−1)+C(x+1)|⋅x(x−1)(x+1)2(x2+x−1)=A⋅x(x−1)(x+1)x+B⋅x(x−1)(x+1)(x−1)+C⋅x(x−1)(x+1)(x+1)2(x2+x−1)=A(x−1)(x+1)+Bx(x+1)+Cx(x−1)
x=0:2(0+0−1)=A(0−1)(0+1)+B⋅0(0+1)+C⋅0(0−1)−2=−AA=2x=1:2(1+1−1)=A(1−1)(1+1)+B⋅1(1+1)+C⋅1(1−1)2=A⋅0(1+1)+B⋅1(1+1)+C⋅1⋅02=2BB=1x=−1:2(1−1−1)=A(−1−1)(−1+1)+B⋅(−1)(−1+1)+C⋅(−1)(−1−1)−2=A(−1−1)⋅0+B⋅(−1)⋅0+C⋅(−1)(−1−1)−2=2CC=−1
(A,B,C)=(2,1,−1)