+0

# a c ountrys population in 1991 was 231 million. in 1999 it was 233 million. estimate the population in 2003 using the exponetial growth form

0
263
1

a c ountrys population in 1991 was 231 million. in 1999 it was 233 million. estimate the population in 2003 using the exponetial growth formula. round your answer to the nearest million.

Guest Dec 1, 2014

#1
+19207
+5

a c ountrys population in 1991 was 231 million. in 1999 it was 233 million. estimate the population in 2003 using the exponetial growth formula. round your answer to the nearest million.

$$\begin{array}{rcl} (1) \quad p(1991) = 231 &=& p_0 * e^{\lambda*1991}\\ (2) \quad p(1999) = 233 &=& p_0 * e^{\lambda*1999} \\ \hline \end{array}\\\\ (2):(1) \begin{array}{rcl} \frac{233}{231} &=& \frac{ \not{p_0} * e^{\lambda*1999} } {\not{p_0} * e^{\lambda*1991} }\\\\ \frac{233}{231}& = &e^{\lambda*1999-\lambda*1991} = e^{8\lambda}\\\\ \ln{(\frac{233}{231})&=& 8\lambda} \\\\ \lambda &=& \frac{ \ln{(\frac{233}{231} )} } {8} \\\\ { \lambda = 0.00107759288 } \end{array}\\$$

$$\\p_0 = \dfrac{231}{ e^{\lambda*1991} } = \dfrac{231}{ e^{0.00107759288*1991} } \\\\ {p_0= 27.0295384716}$$

exponetial growth formula: $$\boxed{p(year) = 27.0295384716 * e^{ 0.00107759288 * year}}$$

$$\\p({2003}) = 27.0295384716 * e^{ 0.00107759288 * {2003} }\\\\ p(2003)= 27.0295384716 * e^{2.15841853962}\\\\ p(2003)= 27.0295384716 * 8.65743543541\\\\ p(2003)= 234.006484167\\\\ \boxed{p(2003)\approx 234 \ Million}$$

heureka  Dec 1, 2014
Sort:

#1
+19207
+5

a c ountrys population in 1991 was 231 million. in 1999 it was 233 million. estimate the population in 2003 using the exponetial growth formula. round your answer to the nearest million.

$$\begin{array}{rcl} (1) \quad p(1991) = 231 &=& p_0 * e^{\lambda*1991}\\ (2) \quad p(1999) = 233 &=& p_0 * e^{\lambda*1999} \\ \hline \end{array}\\\\ (2):(1) \begin{array}{rcl} \frac{233}{231} &=& \frac{ \not{p_0} * e^{\lambda*1999} } {\not{p_0} * e^{\lambda*1991} }\\\\ \frac{233}{231}& = &e^{\lambda*1999-\lambda*1991} = e^{8\lambda}\\\\ \ln{(\frac{233}{231})&=& 8\lambda} \\\\ \lambda &=& \frac{ \ln{(\frac{233}{231} )} } {8} \\\\ { \lambda = 0.00107759288 } \end{array}\\$$

$$\\p_0 = \dfrac{231}{ e^{\lambda*1991} } = \dfrac{231}{ e^{0.00107759288*1991} } \\\\ {p_0= 27.0295384716}$$

exponetial growth formula: $$\boxed{p(year) = 27.0295384716 * e^{ 0.00107759288 * year}}$$

$$\\p({2003}) = 27.0295384716 * e^{ 0.00107759288 * {2003} }\\\\ p(2003)= 27.0295384716 * e^{2.15841853962}\\\\ p(2003)= 27.0295384716 * 8.65743543541\\\\ p(2003)= 234.006484167\\\\ \boxed{p(2003)\approx 234 \ Million}$$

heureka  Dec 1, 2014

### 33 Online Users

We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  See details