We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
0
496
1
avatar

a c ountrys population in 1991 was 231 million. in 1999 it was 233 million. estimate the population in 2003 using the exponetial growth formula. round your answer to the nearest million.

 Dec 1, 2014

Best Answer 

 #1
avatar+22358 
+5

a c ountrys population in 1991 was 231 million. in 1999 it was 233 million. estimate the population in 2003 using the exponetial growth formula. round your answer to the nearest million.

$$\begin{array}{rcl}
(1) \quad p(1991) = 231 &=& p_0 * e^{\lambda*1991}\\
(2) \quad p(1999) = 233 &=& p_0 * e^{\lambda*1999} \\
\hline
\end{array}\\\\
(2):(1)
\begin{array}{rcl}
\frac{233}{231} &=& \frac{ \not{p_0} * e^{\lambda*1999} } {\not{p_0} * e^{\lambda*1991} }\\\\
\frac{233}{231}& = &e^{\lambda*1999-\lambda*1991} = e^{8\lambda}\\\\
\ln{(\frac{233}{231})&=& 8\lambda} \\\\
\lambda &=& \frac{ \ln{(\frac{233}{231} )} } {8} \\\\
\textcolor[rgb]{1,0,0}{ \lambda = 0.00107759288 }
\end{array}\\$$

 

$$\\p_0 = \dfrac{231}{ e^{\lambda*1991} } = \dfrac{231}{ e^{0.00107759288*1991} } \\\\
\textcolor[rgb]{1,0,0}{p_0= 27.0295384716}$$

exponetial growth formula: $$\boxed{p(year) = 27.0295384716 * e^{ 0.00107759288 * year}}$$

$$\\p(\textcolor[rgb]{1,0,0}{2003}) = 27.0295384716 * e^{ 0.00107759288 * \textcolor[rgb]{1,0,0}{2003} }\\\\
p(2003)= 27.0295384716 * e^{2.15841853962}\\\\
p(2003)= 27.0295384716 * 8.65743543541\\\\
p(2003)= 234.006484167\\\\
\boxed{p(2003)\approx 234 \ Million}$$

.
 Dec 1, 2014
 #1
avatar+22358 
+5
Best Answer

a c ountrys population in 1991 was 231 million. in 1999 it was 233 million. estimate the population in 2003 using the exponetial growth formula. round your answer to the nearest million.

$$\begin{array}{rcl}
(1) \quad p(1991) = 231 &=& p_0 * e^{\lambda*1991}\\
(2) \quad p(1999) = 233 &=& p_0 * e^{\lambda*1999} \\
\hline
\end{array}\\\\
(2):(1)
\begin{array}{rcl}
\frac{233}{231} &=& \frac{ \not{p_0} * e^{\lambda*1999} } {\not{p_0} * e^{\lambda*1991} }\\\\
\frac{233}{231}& = &e^{\lambda*1999-\lambda*1991} = e^{8\lambda}\\\\
\ln{(\frac{233}{231})&=& 8\lambda} \\\\
\lambda &=& \frac{ \ln{(\frac{233}{231} )} } {8} \\\\
\textcolor[rgb]{1,0,0}{ \lambda = 0.00107759288 }
\end{array}\\$$

 

$$\\p_0 = \dfrac{231}{ e^{\lambda*1991} } = \dfrac{231}{ e^{0.00107759288*1991} } \\\\
\textcolor[rgb]{1,0,0}{p_0= 27.0295384716}$$

exponetial growth formula: $$\boxed{p(year) = 27.0295384716 * e^{ 0.00107759288 * year}}$$

$$\\p(\textcolor[rgb]{1,0,0}{2003}) = 27.0295384716 * e^{ 0.00107759288 * \textcolor[rgb]{1,0,0}{2003} }\\\\
p(2003)= 27.0295384716 * e^{2.15841853962}\\\\
p(2003)= 27.0295384716 * 8.65743543541\\\\
p(2003)= 234.006484167\\\\
\boxed{p(2003)\approx 234 \ Million}$$

heureka Dec 1, 2014

10 Online Users