We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
+1
7
15268
2
avatar

A central angle θ in a circle of radius 4 m is subtended by an arc of length 5 m. Find the measure of θ in degrees and in radians. θ = degrees (Round your answer to one decimal place.) θ = radians

 

I have been havng issues with this one for a while. Someone please help me!

 Jan 19, 2016

Best Answer 

 #1
avatar+105634 
+10

Circumference = 2pi*r = 2pi*4 = 8pi

 

so

\(\frac{5}{8\pi}=\frac{\theta\;radians}{2\pi}\\ \frac{5*2\pi}{8\pi}=\theta\;radians\\ \theta=\frac{5}{4}\;radians\\~\\ now\\ \pi radians=180 degrees\\ so\\ 1 radian = \frac{180}{\pi}degrees\\ \frac{5}{4}\;radians=\frac{5}{4}*\frac{180}{\pi}degrees\\ \frac{5}{4}\;radians=\frac{225}{\pi}degrees\\~\\ \theta\approx 71.6 \;degrees\)

 

 Jan 21, 2016
 #1
avatar+105634 
+10
Best Answer

Circumference = 2pi*r = 2pi*4 = 8pi

 

so

\(\frac{5}{8\pi}=\frac{\theta\;radians}{2\pi}\\ \frac{5*2\pi}{8\pi}=\theta\;radians\\ \theta=\frac{5}{4}\;radians\\~\\ now\\ \pi radians=180 degrees\\ so\\ 1 radian = \frac{180}{\pi}degrees\\ \frac{5}{4}\;radians=\frac{5}{4}*\frac{180}{\pi}degrees\\ \frac{5}{4}\;radians=\frac{225}{\pi}degrees\\~\\ \theta\approx 71.6 \;degrees\)

 

Melody Jan 21, 2016
 #2
avatar
0

An arc of length 75 m subtends a central angle θ in a circle of radius 25 m. Find the measure of θ in degrees and in radians.

 Jun 17, 2016

18 Online Users

avatar
avatar