+0  
 
0
615
2
avatar

A circle centered at the origin has a radius r=7. Find the slope in the 1st Quadrant when y=3.144 

 Oct 7, 2015

Best Answer 

 #1
avatar+6251 
+5

\(x^2 + y^2 = r^2 \\ x = \sqrt{r^2 - y^2} \\ m = \dfrac y x \\ m = \dfrac y{ \sqrt{r^2 - y^2} } \\ m = \dfrac {3.144}{\sqrt{7^2 - (3.144)^2}} =0.503\)

.
 Oct 7, 2015
 #1
avatar+6251 
+5
Best Answer

\(x^2 + y^2 = r^2 \\ x = \sqrt{r^2 - y^2} \\ m = \dfrac y x \\ m = \dfrac y{ \sqrt{r^2 - y^2} } \\ m = \dfrac {3.144}{\sqrt{7^2 - (3.144)^2}} =0.503\)

Rom Oct 7, 2015
 #2
avatar+129845 
+5

Rom has given the slope of the radial line in the first quadrant.......if, however, you wanted the slope of the tangent line to the circle when y = 3.144, we have :

 

  -sqrt(7^2 - 3.144^2) / 3.144 =  -1.9892 

 

 

 

cool cool cool

 Oct 7, 2015

1 Online Users