+0  
 
0
2420
2
avatar+164 

A climber is standing at the top of Mount Kazbek, approximately 3.1 mi above sea level. The radius of the Earth is 3959 mi.

 

What is the climber's distance to the horizon?

Enter your answer as a decimal. Round only your final answer to the nearest tenth.

 

Answer: 156.7 mi.

 Jun 1, 2017
edited by Gwendolynkristine  Jun 1, 2017

Best Answer 

 #1
avatar+129899 
+2

 

We have a right triangle.....

 

One leg is the radius of the Earth.....   and the hypotenuse =  Earth's radius + 3.1 miles

 

The distance to the horizon forms the other leg and is given by

 

sqrt [  ( 3959 + 3.1)^2   - 3959^2  ]   ≈  156.7 miles

 

 

 

cool cool cool

 Jun 1, 2017
 #1
avatar+129899 
+2
Best Answer

 

We have a right triangle.....

 

One leg is the radius of the Earth.....   and the hypotenuse =  Earth's radius + 3.1 miles

 

The distance to the horizon forms the other leg and is given by

 

sqrt [  ( 3959 + 3.1)^2   - 3959^2  ]   ≈  156.7 miles

 

 

 

cool cool cool

CPhill Jun 1, 2017
 #2
avatar+129899 
0

 

Good job, Gwendolyn....!!!!

 

 

cool cool cool

 Jun 1, 2017

2 Online Users