+0

# A coast guard cutter detects an unidentified ship at 20.0km in the direction 15.0 degrees east of north. The ship is traveling at 26.0km/h o

0
406
8

A coast guard cutter detects an unidentified ship at 20.0km in the direction 15.0 degrees east of north. The ship is traveling at 26.0km/h on a course at 40.0 degrees east of north. The Coast Guard wishes to send a speed boat to intercept and inveatigate the vessel. If the speedboat travels at 50.0km/h , in what direction should it head?

Guest Aug 19, 2015

#3
+91780
+10

Let the point (x,y ) be the point where the speed boat intercepts the vessel

Let t be the time taken to intercept.

Let alpha be the angle between East and the direction the speed boat travels (as shown in the diagram)

So the bearing of the speed boat will be  N(90-alpha)E

$$\\x=20cos75+26tcos50\qquad and \qquad x=50tcos\alpha\\ so\\ 20cos75+26tcos50=50tcos\alpha\\\\ 20cos75=50tcos\alpha-26tcos50\\\\ 20cos75=t(50cos\alpha-26cos50)\\\\ \frac{20cos75}{ (50cos\alpha-26cos50)}=t\\\\ AND\\ y=20sin75+26tsin50\qquad and \qquad y=50tsin\alpha\\\\ ...\\ \frac{20sin75}{ (50sin\alpha-26sin50)}=t\\ so\\ \frac{(20sin75)}{ (50sin\alpha-26sin50)}=\frac{(20cos75)}{ (50cos\alpha-26cos50)}\\\\$$

$$\\(20sin75)(50cos\alpha-26cos50)=(20cos75)(50sin\alpha-26sin50)\\\\ (20sin75)(50cos\alpha)-(20sin75)(26cos50)=(20cos75)(50sin\alpha)-(20cos75)(26sin50)\\\\ (1000sin75)(cos\alpha)-(520sin75cos50)=(1000cos75sin\alpha)-(520cos75sin50)$$

$$\\(1000sin75cos\alpha)-(1000cos75sin\alpha)=(520sin75cos50)-(520cos75sin50)\\\\ 1000(sin75cos\alpha-cos75sin\alpha)=520(sin75cos50-cos75sin50)\\\\ 1000sin(75-\alpha)=520sin(75-50)\\\\ sin(75-\alpha)=0.52sin(25)\\\\ 75-\alpha=asin(0.52sin(25))\\\\ -\alpha=asin(0.52sin(25))-75\\\\ \alpha=75-asin(0.52sin(25))\\\\$$

$${\mathtt{75}}{\mathtt{\,-\,}}\underset{\,\,\,\,^{{360^\circ}}}{{sin}}^{\!\!\mathtt{-1}}{\left({\mathtt{0.52}}{\mathtt{\,\times\,}}\underset{\,\,\,\,^{{360^\circ}}}{{sin}}{\left({\mathtt{25}}^\circ\right)}\right)} = {\mathtt{62.304\: \!975\: \!095\: \!575}}$$

$${\mathtt{90}}{\mathtt{\,-\,}}{\mathtt{62.304\: \!975\: \!095\: \!575}} = {\mathtt{27.695\: \!024\: \!904\: \!425}}$$   =     27 degrees 41minutes and 42 seconds

The speed boat needs to set a course for

$$N\;27^041'42"E$$

What a great question and Heureka and I even agree   :)))

Melody  Aug 20, 2015
Sort:

#1
+18948
+10

A coast guard cutter detects an unidentified ship at 20.0km in the direction 15.0 degrees east of north. The ship is traveling at 26.0km/h on a course at 40.0 degrees east of north. The Coast Guard wishes to send a speed boat to intercept and inveatigate the vessel. If the speedboat travels at 50.0km/h , in what direction should it head?

We set t = time

$$\small{ \begin{array}{lcl} \text{Ship position: } \vec{p}= 20\cdot\binom { \sin{(15\ensurement{^{\circ}})} } { \cos{(15\ensurement{^{\circ}})} } \\\\ \text{Ship traveling: } \vec{s}= 26\cdot t \cdot\binom { \sin{(40\ensurement{^{\circ}})} } { \cos{(40\ensurement{^{\circ}})} } \\\\ \text{Guard cutter traveling: } \vec{c}= 50\cdot t\cdot\binom { \sin{(x)} } { \cos{(x)} } \\\\ \vec{p} + \vec{s} & = &\vec{c} \\\\ 20\cdot\binom { \sin{(15\ensurement{^{\circ}})} } { \cos{(15\ensurement{^{\circ}})} } + 26\cdot t \cdot\binom { \sin{(40\ensurement{^{\circ}})} } { \cos{(40\ensurement{^{\circ}})} } &=& 50\cdot t\cdot\binom { \sin{(x) } } { \cos{(x)} } \\\\ \hline 20\cdot \sin{(15\ensurement{^{\circ}})} + 26\cdot \sin{(40\ensurement{^{\circ}})}\cdot t &=&50\cdot t\cdot \sin{(x)} \\ 20\cdot \cos{(15\ensurement{^{\circ}})} + 26\cdot \cos{(40\ensurement{^{\circ}})}\cdot t &=&50\cdot t\cdot \cos{(x})} \\ \hline \text{Square both sides }\\ \left[ 20\cdot \sin{(15\ensurement{^{\circ}})} + 26\cdot \sin{(40\ensurement{^{\circ}})}\cdot t \right]^2 &=&50^2\cdot t^2 \sin^2{(x)} \\ \left[ 20\cdot \cos{(15\ensurement{^{\circ}})} + 26\cdot \cos{(40\ensurement{^{\circ}})}\cdot t \right]^2 &=&50^2\cdot t^2 \cos^2{(x})} \\ \hline \text{Add }\\ \left[ 20\cdot \sin{(15\ensurement{^{\circ}})} + 26\cdot \sin{(40\ensurement{^{\circ}})}\cdot t \right]^2 \\ + \left[ 20\cdot \cos{(15\ensurement{^{\circ}})} + 26\cdot \cos{(40\ensurement{^{\circ}})}\cdot t \right]^2 &=& 50^2\cdot t^2 [ \sin^2{(x)} + \cos^2{(x})} ] \\ \hline \sin^2{(x)} + \cos^2{(x})} = 1\\ \left[ 20\cdot \sin{(15\ensurement{^{\circ}})} + 26\cdot \sin{(40\ensurement{^{\circ}})}\cdot t \right]^2 \\ + \left[ 20\cdot \cos{(15\ensurement{^{\circ}})} + 26\cdot \cos{(40\ensurement{^{\circ}})}\cdot t \right]^2 &=& 50^2\cdot t^2\\ \hline 20^2\cdot \sin^2{(15\ensurement{^{\circ}})} + 2\cdot 20\cdot 26 \cdot \sin{(15\ensurement{^{\circ}})} \cdot \sin{(40\ensurement{^{\circ}})} \cdot t + 26^2\cdot t^2 \sin^2{(40\ensurement{^{\circ}})} \\ +20^2\cdot \cos^2{(15\ensurement{^{\circ}})} + 2\cdot 20\cdot 26 \cdot \cos{(15\ensurement{^{\circ}})} \cdot \cos{(40\ensurement{^{\circ}})} \cdot t +26^2 \cdot t^2 \cos^2{(40\ensurement{^{\circ}})} &=& 50^2\cdot t^2\\ \hline \sin^2{ (15\ensurement{^{\circ}}) } + \cos^2{ (15\ensurement{^{\circ}}) } = 1\\ \sin^2{ (40\ensurement{^{\circ}}) } + \cos^2{ (40\ensurement{^{\circ}}) } = 1\\ 20^2 + 2\cdot 20\cdot 26 \cdot [ \underbrace{ \cos{ (15\ensurement{^{\circ}}) } \cdot \cos{ (40\ensurement{^{\circ}}) } + \sin{ (15\ensurement{^{\circ}}) } \cdot \sin{ (40\ensurement{^{\circ}}) } }_{=\cos{(40\ensurement{^{\circ}}-15\ensurement{^{\circ}})}=\cos{25\ensurement{^{\circ}}}} ] \cdot t +26^2 t^2 &=& 50^2\cdot t^2\\ \hline \end{array} }$$

$$\small{ \begin{array}{lcl} 50^2\cdot t^2 - 26^2 \cdot t^2 -2\cdot 20\cdot 26 \cdot \cos{ (25\ensurement{^{\circ}}) }\cdot t -20^2 &=& 0\\\\ 1824\cdot t^2 - 1040 \cdot \cos{ (25\ensurement{^{\circ}}) }\cdot t - 400 &=& 0 \\\\ t_{1,2} &=& \frac { 1040\cdot \cos{ (25\ensurement{^{\circ}}) } \pm \sqrt{ 1040^2\cdot \cos^2{ (25\ensurement{^{\circ}}) } - 4\cdot 1824 \cdot (-400) } } { 2\cdot 1824 } \\\\ t_{1,2} &=& \frac { 1040\cdot \cos{ (25\ensurement{^{\circ}}) } \pm \sqrt{ 1040^2\cdot \cos^2{ (25\ensurement{^{\circ}}) } + 2918400 } } { 2\cdot 1824 } \\\\ t_{1,2} &=& \frac { 1040\cdot \cos{ (25\ensurement{^{\circ}}) } \pm \sqrt{3806819.53932 } } { 3648 } \\\\ t_{1,2} &=& \frac { 1040\cdot \cos{ (25\ensurement{^{\circ}}) } \pm 1951.10725982 } { 3648 } \\\\ t_{1,2} &=& \frac{ 942.560098518 \pm 1951.10725982 } { 3648 } \\\\ t &=& 0.79322021884~ \text{hours}\\ t &=& 47.5932131305~ \text{minutes}\\ \hline \end{array} }$$

$$\small{ \begin{array}{llcl} \text{Azimuth angle: } & \tan{(\alpha_{\text{azimuth}})} &=& \frac{ \sin{ (x) } }{ \cos{ (x) } } \\\\ & \tan{(\alpha_{\text{azimuth}})} &=& \dfrac{ 20\cdot \sin{(15\ensurement{^{\circ}})} + 26\cdot \sin{(40\ensurement{^{\circ}})}\cdot t } { 20\cdot \cos{(15\ensurement{^{\circ}})} + 26\cdot \cos{(40\ensurement{^{\circ}})}\cdot t } \\\\ & \tan{(\alpha_{\text{azimuth}})} &=& \dfrac{ 18.4330562411 } { 35.1172069869 } \\\\ & \tan{(\alpha_{\text{azimuth}})} &=& 0.52490097655 \\\\ &\alpha_{\text{azimuth}} &=& \arctan{ ( 0.52490097655 ) } \\ &\mathbf{\alpha_{\text{azimuth}} } & \mathbf{=} & \mathbf{27.6950249044\ensurement{^{\circ}} }\\ \end{array} }$$

The speed boat needs to set a course for

$$N\;27^0~41'~42"~E$$

Thank you Melody, i don't need to divide by 16, my mistake!

heureka  Aug 20, 2015
#2
+91780
0

That is a really interesting question.   And a great answer

I wish I could give you more points Heureka

Melody  Aug 20, 2015
#3
+91780
+10

Let the point (x,y ) be the point where the speed boat intercepts the vessel

Let t be the time taken to intercept.

Let alpha be the angle between East and the direction the speed boat travels (as shown in the diagram)

So the bearing of the speed boat will be  N(90-alpha)E

$$\\x=20cos75+26tcos50\qquad and \qquad x=50tcos\alpha\\ so\\ 20cos75+26tcos50=50tcos\alpha\\\\ 20cos75=50tcos\alpha-26tcos50\\\\ 20cos75=t(50cos\alpha-26cos50)\\\\ \frac{20cos75}{ (50cos\alpha-26cos50)}=t\\\\ AND\\ y=20sin75+26tsin50\qquad and \qquad y=50tsin\alpha\\\\ ...\\ \frac{20sin75}{ (50sin\alpha-26sin50)}=t\\ so\\ \frac{(20sin75)}{ (50sin\alpha-26sin50)}=\frac{(20cos75)}{ (50cos\alpha-26cos50)}\\\\$$

$$\\(20sin75)(50cos\alpha-26cos50)=(20cos75)(50sin\alpha-26sin50)\\\\ (20sin75)(50cos\alpha)-(20sin75)(26cos50)=(20cos75)(50sin\alpha)-(20cos75)(26sin50)\\\\ (1000sin75)(cos\alpha)-(520sin75cos50)=(1000cos75sin\alpha)-(520cos75sin50)$$

$$\\(1000sin75cos\alpha)-(1000cos75sin\alpha)=(520sin75cos50)-(520cos75sin50)\\\\ 1000(sin75cos\alpha-cos75sin\alpha)=520(sin75cos50-cos75sin50)\\\\ 1000sin(75-\alpha)=520sin(75-50)\\\\ sin(75-\alpha)=0.52sin(25)\\\\ 75-\alpha=asin(0.52sin(25))\\\\ -\alpha=asin(0.52sin(25))-75\\\\ \alpha=75-asin(0.52sin(25))\\\\$$

$${\mathtt{75}}{\mathtt{\,-\,}}\underset{\,\,\,\,^{{360^\circ}}}{{sin}}^{\!\!\mathtt{-1}}{\left({\mathtt{0.52}}{\mathtt{\,\times\,}}\underset{\,\,\,\,^{{360^\circ}}}{{sin}}{\left({\mathtt{25}}^\circ\right)}\right)} = {\mathtt{62.304\: \!975\: \!095\: \!575}}$$

$${\mathtt{90}}{\mathtt{\,-\,}}{\mathtt{62.304\: \!975\: \!095\: \!575}} = {\mathtt{27.695\: \!024\: \!904\: \!425}}$$   =     27 degrees 41minutes and 42 seconds

The speed boat needs to set a course for

$$N\;27^041'42"E$$

What a great question and Heureka and I even agree   :)))

Melody  Aug 20, 2015
#4
+91780
+5

I added this into the "great questions to learn from" sticky thread :)

Melody  Aug 20, 2015
#5
+18948
0

Thank you Melody, i don't need to divide by 16, my mistake!

heureka  Aug 20, 2015
#6
+91780
+5

I thought your answer was the same as mine. I thought you gave the complementary angle. :)

Anyway your answer is still very impressive :))

Melody  Aug 20, 2015
#7
+82733
0

Very nice problem and good answers from heureka and Melody.....!!!

CPhill  Aug 23, 2015
#8
+91780
0

Thanks Chris :))

Melody  Aug 24, 2015

### 20 Online Users

We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  See details