+0  
 
0
4
23360
1
avatar

A contestant in a winter games event pushes a 54.0 kg block of ice across a frozen lake with a rope over his shoulder as shown in Figure 4.29(b). The coefficient of static friction is 0.1 and the coefficient of kinetic friction is 0.03. 


Figure 4.29
(a) Calculate the minimum force  F he must exert to get the block moving.
N
(b) What is its acceleration once it starts to move, if that force is maintained?
m/s 2
 Nov 2, 2014

Best Answer 

 #1
avatar+33661 
+5

(a) Net downward vertical force on block = mass*g - F*sin(θ)   or 54*9.8 - F*sin(25°) N

Resistive force = μ*(mass*g - F*sin(θ)) = 0.1*(54*9.8 - F*sin(25°) ) N

Hence, to get the block moving we must have F*cos(θ) = μ*(mass*g - F*sin(θ))

F = μ*mass*g/(cos(θ) + μ*sin(θ)) 

$${\mathtt{F}} = {\frac{{\mathtt{0.1}}{\mathtt{\,\times\,}}{\mathtt{54}}{\mathtt{\,\times\,}}{\mathtt{9.8}}}{\left(\underset{\,\,\,\,^{\textcolor[rgb]{0.66,0.66,0.66}{360^\circ}}}{{cos}}{\left({\mathtt{25}}^\circ\right)}{\mathtt{\,\small\textbf+\,}}{\mathtt{0.1}}{\mathtt{\,\times\,}}\underset{\,\,\,\,^{\textcolor[rgb]{0.66,0.66,0.66}{360^\circ}}}{{sin}}{\left({\mathtt{25}}^\circ\right)}\right)}} \Rightarrow {\mathtt{F}} = {\mathtt{55.789\: \!263\: \!395\: \!076\: \!610\: \!5}}$$

or F ≈ 55.8 N

 

(b) Net force horizontal force on the block once it is moving = F*cos(θ) - μk*(mass*g - F*sin(θ))

where μk is kinetic coefficient of friction.  This force equals mass*a, where a is acceleration, so:

mass*a = F*cos(θ) - μk*(mass*g - F*sin(θ))

a = F*(cos(θ) + μk*sin(θ))/mass - μk*g

$${\mathtt{a}} = {\frac{{\mathtt{55.789\: \!263\: \!395\: \!1}}{\mathtt{\,\times\,}}\left(\underset{\,\,\,\,^{\textcolor[rgb]{0.66,0.66,0.66}{360^\circ}}}{{cos}}{\left({\mathtt{25}}^\circ\right)}{\mathtt{\,\small\textbf+\,}}{\mathtt{0.03}}{\mathtt{\,\times\,}}\underset{\,\,\,\,^{\textcolor[rgb]{0.66,0.66,0.66}{360^\circ}}}{{sin}}{\left({\mathtt{25}}^\circ\right)}\right)}{{\mathtt{54}}}}{\mathtt{\,-\,}}{\mathtt{0.03}}{\mathtt{\,\times\,}}{\mathtt{9.8}} \Rightarrow {\mathtt{a}} = {\mathtt{0.655\: \!436\: \!494\: \!326\: \!533\: \!9}}$$

or a ≈ 0.655 m/s2

.

 Nov 3, 2014
 #1
avatar+33661 
+5
Best Answer

(a) Net downward vertical force on block = mass*g - F*sin(θ)   or 54*9.8 - F*sin(25°) N

Resistive force = μ*(mass*g - F*sin(θ)) = 0.1*(54*9.8 - F*sin(25°) ) N

Hence, to get the block moving we must have F*cos(θ) = μ*(mass*g - F*sin(θ))

F = μ*mass*g/(cos(θ) + μ*sin(θ)) 

$${\mathtt{F}} = {\frac{{\mathtt{0.1}}{\mathtt{\,\times\,}}{\mathtt{54}}{\mathtt{\,\times\,}}{\mathtt{9.8}}}{\left(\underset{\,\,\,\,^{\textcolor[rgb]{0.66,0.66,0.66}{360^\circ}}}{{cos}}{\left({\mathtt{25}}^\circ\right)}{\mathtt{\,\small\textbf+\,}}{\mathtt{0.1}}{\mathtt{\,\times\,}}\underset{\,\,\,\,^{\textcolor[rgb]{0.66,0.66,0.66}{360^\circ}}}{{sin}}{\left({\mathtt{25}}^\circ\right)}\right)}} \Rightarrow {\mathtt{F}} = {\mathtt{55.789\: \!263\: \!395\: \!076\: \!610\: \!5}}$$

or F ≈ 55.8 N

 

(b) Net force horizontal force on the block once it is moving = F*cos(θ) - μk*(mass*g - F*sin(θ))

where μk is kinetic coefficient of friction.  This force equals mass*a, where a is acceleration, so:

mass*a = F*cos(θ) - μk*(mass*g - F*sin(θ))

a = F*(cos(θ) + μk*sin(θ))/mass - μk*g

$${\mathtt{a}} = {\frac{{\mathtt{55.789\: \!263\: \!395\: \!1}}{\mathtt{\,\times\,}}\left(\underset{\,\,\,\,^{\textcolor[rgb]{0.66,0.66,0.66}{360^\circ}}}{{cos}}{\left({\mathtt{25}}^\circ\right)}{\mathtt{\,\small\textbf+\,}}{\mathtt{0.03}}{\mathtt{\,\times\,}}\underset{\,\,\,\,^{\textcolor[rgb]{0.66,0.66,0.66}{360^\circ}}}{{sin}}{\left({\mathtt{25}}^\circ\right)}\right)}{{\mathtt{54}}}}{\mathtt{\,-\,}}{\mathtt{0.03}}{\mathtt{\,\times\,}}{\mathtt{9.8}} \Rightarrow {\mathtt{a}} = {\mathtt{0.655\: \!436\: \!494\: \!326\: \!533\: \!9}}$$

or a ≈ 0.655 m/s2

.

Alan Nov 3, 2014

2 Online Users

avatar
avatar