1: If A is an acute angle such that tan A + sec A = 2, then find cos A.
2: In triangle GHI, we have GH = HI = 25 and GI = 30. What is sin (angle GHI)?
3: ABCD is a regular tetrahedron (right triangular pyramid). If M is the midpoint of line CD, then what is cos (angle AMB)?
4: How many values of x with \(0^\circ \le x < 990^\circ\) satisfy sin x = -0.31?
Thanks so much!
1: If A is an acute angle such that tan A + sec A = 2, then find cos A.
tan A + sec A = 2
sin A / cos A + 1 / cos A = 2
(sin A + 1 ) /cos A = 2 ...... since A is acute, then A < 90...so cos A is not 0
So ...multiply both sides by cos A
sin A + 1 = 2 cos A square both sides
sin^2A + 2sinA + 1 = 4cos^2 A
sin^2A + 2sinA + 1 = 4(1- sin^2 A) ..... simplify
5sin^2 A + 2sin A - 3 = 0 factor
(5 sin A - 3 ) ( sin A + 1) = 0
So....we have two possible solutions
5 sinA - 3 = 0 sin A + 1 = 0
5 sin A = 3 sin A = -1
sin A = 3/5 A = 270° (reject)
Since the sin A = 3/5....then cos A = sqrt [ 1 - ( 3/5)^2 ] = sqrt [ 25 - 9] / 5 =
sqrt (16)/5 = 4/5
2: In triangle GHI, we have GH = HI = 25 and GI = 30. What is sin (angle GHI)?
H
25 25
G 30 I
This ttrangle is isosceles
Using the Law od Cosines
30^2 = 2 (25)^2 - 2(25)^2 cos A
-350 / [ -1250 ] = cos A
cos A = 7/25
sin A = sqrt [ 1 - cos^2 A ] = sqrt [ 1 - (7/25)^2 ] = sqrt [ 625 - 49] / 25 =
sqrt [ 576] / 25 = 24 /25
3: ABCD is a regular tetrahedron (right triangular pyramid). If M is the midpoint of line CD, then what is cos (angle AMB)?
Let AB = side of the tetrahedron = s
Then BM = AM = s * sqrt(3)/2
Using the Law of Cosines, we have that
AB^2 = BM^2 + AM^2 - 2 (BM)(AM) cos AMB
s^2 = (3/4)s^2 + (3/4)s^2 - 2 ( 3/4)s^2 cos AMB
s^2 = (3/2)s^2 - (3/2)s^2 cos AMB
- (1/2)s^2 = -(3/2)s^2 cos AMB
[ 1/2]s^2 / [ (3/2) s^2 ] = cos AMB
[ 1/2] / [3/2] = cos AMB
(1/2)( 2/3) = cos AMB
1/3 = cos AMB