+0  
 
0
330
1
avatar+598 

A function $f$ has a horizontal asymptote of $y = -4,$ a vertical asymptote of $x = 3,$ and an $x$-intercept at $(1,0).$ Part (a): Let $f$ be of the form $$f(x) = \frac{ax+b}{x+c}.$$Find an expression for $f(x).$ Part (b): Let $f$ be of the form $$f(x) = \frac{rx+s}{2x+t}.$$Find an expression for $f(x).$

michaelcai  Sep 22, 2017
 #1
avatar+87301 
+1

 

f(x)   =  [ ax + b ] / [ x + c ]

 

a = -4      and  -3 + c  = 0 →   c = -3       

And    if the x intercept   is (1, 0), then      -4(1)  + b  = 0   →  b  = 4  

 

So

 

f(x) =   [  -4x + 4 ] /  [ x - 3 ] 

 

See the graph, here :  https://www.desmos.com/calculator/u8akarzdzg

 

 

 

f(x) =  [ rx  +  s ]  / [ 2x + t ]

 

r =  -8           and       2(3) + t  = 0   →  t  = -6        

And  if the x intercept   is (1, 0), then  -8(1)+ s = 0   → s  = 8 

 

So

 

f (x)   = [ -8x + 8 ] / [ 2x - 6]  

 

See the graph here : https://www.desmos.com/calculator/eeeod2ssah

 

 

 

 

cool cool cool

CPhill  Sep 22, 2017

7 Online Users

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.