We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
+1
484
2
avatar+1438 

A function f has a horizontal asymptote of y = -4, a vertical asymptote of x = 3, and an x-intercept at (1,0).

 

PART A: Let f be of the form

 

                       f(x)=(ax+b)/(x+c)

 

Find an expression for f(x).

 

PART B: Let f be of the form

 

                       f(x)=(rx+s)/(2x+t)

 

Find an expression for f(x).

 

Thanks!

 Dec 18, 2017
 #1
avatar+101431 
+3

A function f has a horizontal asymptote of y = -4, a vertical asymptote of x = 3, and an x-intercept at (1,0). PART A: Let f be of the form

                       f(x)=(ax+b)/(x+c)

                       Find an expression for f(x).

 

Since we have a vertical asymptote at x = 3, c  = - 3.....and since we have a horizontal asymptote at y  = -4, a  = -4......and since we have an  x intercept at (1,0), we can solve this for b ⇒  -4(1)  +  b =  0 ⇒  b  = 4......here's the graph : https://www.desmos.com/calculator/1pmoaiuapl

 

PART B: Let f be of the form

                       f(x)=(rx+s)/(2x+t)

Find an expression for f(x).

 

Since the vertical asymptote is at 3 , we can solve this for t.....2(3) + t  = 0 ⇒  t  = -6

And since the horizontal asymptote is at -4, r  = -8

And since we have an x intercept at (1,0), we can solve this for s......-8(1) + s  = 0 ⇒  s  = 8

Here's a graph : https://www.desmos.com/calculator/gyqo2l6jdl

 

 

cool cool cool

 Dec 18, 2017
 #2
avatar+1438 
+3

Thanks!

 Dec 18, 2017

13 Online Users

avatar
avatar
avatar