Loading [MathJax]/jax/output/SVG/jax.js
 
+0  
 
0
1413
3
avatar+489 

A function f is defined on the complex numbers by

f(z)=(a+bi)z,

where  a and b are positive real numbers. This function has the property that the image of each point in the complex plane is equidistant from that point and the origin. Given that

|a+bi|=3

find a and b

 Dec 20, 2018
 #1
avatar+6251 
+1

a=12b=352

.
 Dec 20, 2018
 #2
avatar+489 
0

can i see the steps please?

RektTheNoob  Dec 21, 2018
 #3
avatar+6251 
+1

I'll give you a hint.

 

since f(z) has the stated property zf(1) is equidistant from (0,0i), and (1,0i)The locus of these points is (12,iy), yRFrom this you can figure out aOnce you have a finding b is trivial

Rom  Dec 21, 2018
edited by Rom  Dec 21, 2018

2 Online Users

avatar
avatar