A function f(x) is said to have a jump discontinuity at x = a if:
1. \( \displaystyle{ \lim_{x\to a^-}f(x)}\) exists.
2. \( \displaystyle{ \lim_{x\to a^+}f(x)}\) exists.
3. The left and right limits are not equal.
Let \(f(x) = \begin{cases} 5 x - 2, &\text{if}\ x<10\\ \frac{4}{x+5}, &\text{if}\ x\geq 10 \end{cases}\)
Show that f(x) has a jump discontinuity at x = 10 by calculating the limits from the left and right at x = 10.
\(\displaystyle{ \lim_{x\to 10^-}f(x)}=\) ?
\(\displaystyle{ \lim_{x\to 10^+}f(x)}=\) ?