+0  
 
0
504
2
avatar

A high fountain of water is located at the center of a circular pool. Circumference is 29.0 meters. Angle of elevation of the bottom of the fountain is 57 degrees. How high is the fountain?

Guest Aug 9, 2015

Best Answer 

 #2
avatar+18712 
+5

$$c=2\pi r=29
\\\\
h=r\cdot
\tan{(57)}\\\\
h=\dfrac{29}{2\pi}\cdot\tan
{(57)}\qquad r=4.62 ~m
\\\\
h=4.61549335\cdot 1.539864964\\\\
h=7.1072365~m\\\\
h
=
7.11~m$$

heureka  Aug 9, 2015
Sort: 

2+0 Answers

 #1
avatar+26328 
+5

height = radius*tan(elevation)

 

radius = circumference /(2pi)

 

so radius = 29/(2pi) metres

 

$${\mathtt{height}} = {\frac{{\mathtt{29}}}{\left({\mathtt{2}}{\mathtt{\,\times\,}}{\mathtt{\pi}}\right)}}{\mathtt{\,\times\,}}\underset{\,\,\,\,^{\textcolor[rgb]{0.66,0.66,0.66}{360^\circ}}}{{tan}}{\left({\mathtt{57}}^\circ\right)} \Rightarrow {\mathtt{height}} = {\mathtt{7.107\: \!236\: \!499\: \!870\: \!214\: \!1}}$$

 

height ≈ 7 metres

.

Alan  Aug 9, 2015
 #2
avatar+18712 
+5
Best Answer

$$c=2\pi r=29
\\\\
h=r\cdot
\tan{(57)}\\\\
h=\dfrac{29}{2\pi}\cdot\tan
{(57)}\qquad r=4.62 ~m
\\\\
h=4.61549335\cdot 1.539864964\\\\
h=7.1072365~m\\\\
h
=
7.11~m$$

heureka  Aug 9, 2015

10 Online Users

avatar
avatar
We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  See details