+0  
 
0
899
2
avatar

A high fountain of water is located at the center of a circular pool. Circumference is 29.0 meters. Angle of elevation of the bottom of the fountain is 57 degrees. How high is the fountain?

Guest Aug 9, 2015

Best Answer 

 #2
avatar+19653 
+5

$$c=2\pi r=29
\\\\
h=r\cdot
\tan{(57)}\\\\
h=\dfrac{29}{2\pi}\cdot\tan
{(57)}\qquad r=4.62 ~m
\\\\
h=4.61549335\cdot 1.539864964\\\\
h=7.1072365~m\\\\
h
=
7.11~m$$

heureka  Aug 9, 2015
 #1
avatar+26753 
+5

height = radius*tan(elevation)

 

radius = circumference /(2pi)

 

so radius = 29/(2pi) metres

 

$${\mathtt{height}} = {\frac{{\mathtt{29}}}{\left({\mathtt{2}}{\mathtt{\,\times\,}}{\mathtt{\pi}}\right)}}{\mathtt{\,\times\,}}\underset{\,\,\,\,^{\textcolor[rgb]{0.66,0.66,0.66}{360^\circ}}}{{tan}}{\left({\mathtt{57}}^\circ\right)} \Rightarrow {\mathtt{height}} = {\mathtt{7.107\: \!236\: \!499\: \!870\: \!214\: \!1}}$$

 

height ≈ 7 metres

.

Alan  Aug 9, 2015
 #2
avatar+19653 
+5
Best Answer

$$c=2\pi r=29
\\\\
h=r\cdot
\tan{(57)}\\\\
h=\dfrac{29}{2\pi}\cdot\tan
{(57)}\qquad r=4.62 ~m
\\\\
h=4.61549335\cdot 1.539864964\\\\
h=7.1072365~m\\\\
h
=
7.11~m$$

heureka  Aug 9, 2015

8 Online Users

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.