+0  
 
-3
765
2
avatar+1 

Hi! I'm stuck on this problem. (It has three parts). I'm not sure how to turn it into LaTeX, sorry. 

a) Consider the matrix\[\mathbf{A} = \begin{pmatrix} 2 & 4 \\ 1 & 2 \end{pmatrix}.\]If the columns of $\mathbf{A}$ are linearly independent, answer with $?$. If they aren't, find coefficients $a$ and $b$, not both $0$, such that \[a \begin{pmatrix}  2\\ 1 \end{pmatrix}  + b \begin{pmatrix} 4 \\ 2 \end{pmatrix} = \begin{pmatrix}0 \\ 0 \end{pmatrix}\]and answer with $\dfrac{a}{b}$.

 

b) Consider the matrix  Solve the equation
If the only solution is , answer with . If there exists another solution  answer with .

 

c) Consider the matrix $\mathbf{A} = \begin{pmatrix} 2 & 4 \\ 1 & 2 \end{pmatrix}.$ Then what is $\mathbf{A}^{-1} \begin{pmatrix} 0 \\ 0 \end{pmatrix}?$ If this is not defined, answer with $\begin{pmatrix} ? \\ ? \end {pmatrix}.$

 Mar 24, 2020
 #1
avatar+499 
+1

format! format! format please! for all the latex parts, just paste it into the latex editor. There's one built into the answer box for web2.0calc. We're not here to translate LaTeX into a problem!

 Mar 24, 2020
 #2
avatar+2094 
0

Yeah, this is unreadable.

 Mar 24, 2020

2 Online Users

avatar