A pair of the identical circles are overlapping each other. Their diameter (D) is 20cm, and the distance between the centers is 10cm. In the grey area, it is possible to inscribe only two golden rectangles - different in size.
Can you find the area of a larger one?
A pair of the identical circles are overlapping each other. Their diameter (D) is 20cm, and the distance between the centers is 10cm. In the grey area, it is possible to inscribe only two golden rectangles - different in size.
Can you find the area of a larger one?
$$\small{\text{$\boxed{\varphi=\dfrac{1+\sqrt{5}}{2}} \qquad \Delta_c=10~cm\qquad D = 20~cm$}}\\\\
\mathrm{circle:~~}
(\vec{x})^2= (\frac{D}{2})^2\\\\
\mathrm{line:~~}
\binom{\frac{\Delta_c}{2}}{0}+\lambda\binom{1}{\varphi}=\vec{x}\\\\
\mathrm{golden~ rectangle:~~}
\small{\text{$
\binom{ \frac{width}{2} }{ \frac{height}{2} } = \lambda\binom{1}{\varphi} ~~ \mathrm{~or~}~~\mathrm{~width~} = 2\lambda ~~ \mathrm{~and~} ~~ \mathrm{~height~} = 2\varphi\lambda
$}}\\
\mathrm{ratio~}=\frac{height}{width}=\frac{2\varphi\lambda
}{2\lambda } = \varphi\\\\
\boxed{\mathrm{~area~}~~=
\mathrm{~width~} \cdot \mathrm{~height~} = 4 \varphi\lambda^2}$$
$$\\\mathrm{solve~~} \lambda :\\\\
\small{\text{$
\begin{array}{rcl}
\left[
\binom{\frac{\Delta_c}{2}}{0}+\lambda\binom{1}{\varphi}
\right]^2
=(\vec{x})^2 &=& (\frac{D}{2})^2\\\\
\left[
\binom{\frac{\Delta_c}{2}}{0}+\lambda\binom{1}{\varphi}
\right]^2
&=& (\frac{D}{2})^2\\\\
\binom{\frac{\Delta_c}{2}}{0}\cdot \binom{\frac{\Delta_c}{2}}{0}
+
2\lambda\binom{\frac{\Delta_c}{2}}{0}\cdot \binom{1}{\varphi}
+ \lambda^2 \binom{1}{\varphi}\cdot \binom{1}{\varphi}
&=& (\frac{D}{2})^2\\\\
\frac{\Delta_c^2}{4}+\lambda\Delta_c+\lambda^2(1+\varphi^2)
&=&\frac{D^2}{4}\\\\
(1+\varphi^2)\lambda^2 + \Delta_c\lambda - \frac{D^2-\Delta_c^2}{4}&=& 0\\\\
\mathbf{\lambda }&\mathbf{=}&
\mathbf{
\dfrac{
\sqrt{\Delta_c^2+ (1+\varphi^2)(D^2 - \Delta_c^2) } -\Delta_c } { 2(1+\varphi^2) }
}
\end{array}
$}}$$
$$\small{\text{$
\begin{array}{rcl}
\mathrm{~area}
= 4 \varphi\lambda^2
&=& 4 \varphi\
\left[
\dfrac{
\sqrt{\Delta_c^2+ (1+\varphi^2)(D^2 - \Delta_c^2) } -\Delta_c } { 2(1+\varphi^2) }
\right]^2\\\\
\mathrm{~area}
&=& 4 \varphi\
\dfrac{
\left[ \sqrt{
\Delta_c^2+ (1+\varphi^2)(D^2 - \Delta_c^2) } -\Delta_c \right]^2} { 4(1+\varphi^2)^2 }\\\\
\mathrm{~area}
&=& \varphi\
\dfrac{
\left[ \sqrt{
\Delta_c^2+ (1+\varphi^2)(D^2 - \Delta_c^2) } -\Delta_c \right]^2} { (1+\varphi^2)^2 }\\\\
\mathrm{~area}
&=& \dfrac{ \varphi } { (1+\varphi^2)^2 }
\left[ \sqrt{
\Delta_c^2+ (1+\varphi^2)(D^2 - \Delta_c^2) } -\Delta_c \right]^2 \qquad |\qquad 1+\varphi^2 = 2+\varphi = \sqrt{5}\varphi\\\\
\mathrm{~area}
&=& \dfrac{ \varphi } { 5\varphi^2 }
\left[ \sqrt{
\Delta_c^2+ (2+\varphi )(D^2 - \Delta_c^2) } -\Delta_c \right]^2 \\\\
\mathrm{~area}
&=& \dfrac{ 1} { 5\varphi }
\left[ \sqrt{
\Delta_c^2+ (2+\varphi )(D^2 - \Delta_c^2) } -\Delta_c \right]^2 \qquad |\qquad \dfrac{1}{\varphi} = \varphi -1 \\\\
\mathrm{~area}
&=& \dfrac{ \varphi -1 } { 5 }
\left[ \sqrt{
\Delta_c^2+ (2+\varphi )(D^2 - \Delta_c^2) } -\Delta_c \right]^2
\end{array}
$}}$$
$$\boxed{
\mathrm{~area}
= \left( \dfrac{ \varphi -1 } { 5 } \right)
\left[ \sqrt{
\Delta_c^2+ (2+\varphi )(D^2 - \Delta_c^2) } -\Delta_c \right]^2
}$$
$$\small{\text{$
\begin{array}{rcl}
\mathrm{~area}
&=& \left( \dfrac{ \varphi -1 } { 5 } \right)
\left[ \sqrt{
\Delta_c^2+ (2+\varphi )(D^2 - \Delta_c^2) } -\Delta_c \right]^2 \qquad |\qquad \Delta_c = 10 \qquad D = 20 \\\\
\mathrm{~area}
&=& \left( \dfrac{ \varphi -1 } { 5 } \right)
\left[ \sqrt{
100+ (2+\varphi )(400 - 100) } -10 \right]^2 \\\\
\mathrm{~area}
&=& \left( \dfrac{ \varphi -1 } { 5 } \right)
\left[ \sqrt{
100+ (2+\varphi )300 } -10 \right]^2 \\\\
\mathrm{~area}
&=& 0.12360679775\cdot
\left[ 34.4297864737 -10 \right]^2\\\\
\mathrm{~area}
&=& 0.12360679775\cdot 596.814467151\\\\
\mathrm{~area}
&=& 73.7703251354 \mathrm{~cm^2}
\end{array}
$}}$$
Here's a possible orientation......https://www.desmos.com/calculator/rjfefnmdaw
The largest golden rectangle will have its vertces at about (±3.37611, ±5.46267) ....and its area will be.....
2(3.37611) * 2(5.46267) ≈ 73.77 cm^2
The other golden rectangle will have its vertices at about (±4.58932, ±2.83636) ....and it's area will be...
2(4.58932)*2(2.83636) ≈ 52.068 cm^2
A pair of the identical circles are overlapping each other. Their diameter (D) is 20cm, and the distance between the centers is 10cm. In the grey area, it is possible to inscribe only two golden rectangles - different in size.
Can you find the area of a larger one?
$$\small{\text{$\boxed{\varphi=\dfrac{1+\sqrt{5}}{2}} \qquad \Delta_c=10~cm\qquad D = 20~cm$}}\\\\
\mathrm{circle:~~}
(\vec{x})^2= (\frac{D}{2})^2\\\\
\mathrm{line:~~}
\binom{\frac{\Delta_c}{2}}{0}+\lambda\binom{1}{\varphi}=\vec{x}\\\\
\mathrm{golden~ rectangle:~~}
\small{\text{$
\binom{ \frac{width}{2} }{ \frac{height}{2} } = \lambda\binom{1}{\varphi} ~~ \mathrm{~or~}~~\mathrm{~width~} = 2\lambda ~~ \mathrm{~and~} ~~ \mathrm{~height~} = 2\varphi\lambda
$}}\\
\mathrm{ratio~}=\frac{height}{width}=\frac{2\varphi\lambda
}{2\lambda } = \varphi\\\\
\boxed{\mathrm{~area~}~~=
\mathrm{~width~} \cdot \mathrm{~height~} = 4 \varphi\lambda^2}$$
$$\\\mathrm{solve~~} \lambda :\\\\
\small{\text{$
\begin{array}{rcl}
\left[
\binom{\frac{\Delta_c}{2}}{0}+\lambda\binom{1}{\varphi}
\right]^2
=(\vec{x})^2 &=& (\frac{D}{2})^2\\\\
\left[
\binom{\frac{\Delta_c}{2}}{0}+\lambda\binom{1}{\varphi}
\right]^2
&=& (\frac{D}{2})^2\\\\
\binom{\frac{\Delta_c}{2}}{0}\cdot \binom{\frac{\Delta_c}{2}}{0}
+
2\lambda\binom{\frac{\Delta_c}{2}}{0}\cdot \binom{1}{\varphi}
+ \lambda^2 \binom{1}{\varphi}\cdot \binom{1}{\varphi}
&=& (\frac{D}{2})^2\\\\
\frac{\Delta_c^2}{4}+\lambda\Delta_c+\lambda^2(1+\varphi^2)
&=&\frac{D^2}{4}\\\\
(1+\varphi^2)\lambda^2 + \Delta_c\lambda - \frac{D^2-\Delta_c^2}{4}&=& 0\\\\
\mathbf{\lambda }&\mathbf{=}&
\mathbf{
\dfrac{
\sqrt{\Delta_c^2+ (1+\varphi^2)(D^2 - \Delta_c^2) } -\Delta_c } { 2(1+\varphi^2) }
}
\end{array}
$}}$$
$$\small{\text{$
\begin{array}{rcl}
\mathrm{~area}
= 4 \varphi\lambda^2
&=& 4 \varphi\
\left[
\dfrac{
\sqrt{\Delta_c^2+ (1+\varphi^2)(D^2 - \Delta_c^2) } -\Delta_c } { 2(1+\varphi^2) }
\right]^2\\\\
\mathrm{~area}
&=& 4 \varphi\
\dfrac{
\left[ \sqrt{
\Delta_c^2+ (1+\varphi^2)(D^2 - \Delta_c^2) } -\Delta_c \right]^2} { 4(1+\varphi^2)^2 }\\\\
\mathrm{~area}
&=& \varphi\
\dfrac{
\left[ \sqrt{
\Delta_c^2+ (1+\varphi^2)(D^2 - \Delta_c^2) } -\Delta_c \right]^2} { (1+\varphi^2)^2 }\\\\
\mathrm{~area}
&=& \dfrac{ \varphi } { (1+\varphi^2)^2 }
\left[ \sqrt{
\Delta_c^2+ (1+\varphi^2)(D^2 - \Delta_c^2) } -\Delta_c \right]^2 \qquad |\qquad 1+\varphi^2 = 2+\varphi = \sqrt{5}\varphi\\\\
\mathrm{~area}
&=& \dfrac{ \varphi } { 5\varphi^2 }
\left[ \sqrt{
\Delta_c^2+ (2+\varphi )(D^2 - \Delta_c^2) } -\Delta_c \right]^2 \\\\
\mathrm{~area}
&=& \dfrac{ 1} { 5\varphi }
\left[ \sqrt{
\Delta_c^2+ (2+\varphi )(D^2 - \Delta_c^2) } -\Delta_c \right]^2 \qquad |\qquad \dfrac{1}{\varphi} = \varphi -1 \\\\
\mathrm{~area}
&=& \dfrac{ \varphi -1 } { 5 }
\left[ \sqrt{
\Delta_c^2+ (2+\varphi )(D^2 - \Delta_c^2) } -\Delta_c \right]^2
\end{array}
$}}$$
$$\boxed{
\mathrm{~area}
= \left( \dfrac{ \varphi -1 } { 5 } \right)
\left[ \sqrt{
\Delta_c^2+ (2+\varphi )(D^2 - \Delta_c^2) } -\Delta_c \right]^2
}$$
$$\small{\text{$
\begin{array}{rcl}
\mathrm{~area}
&=& \left( \dfrac{ \varphi -1 } { 5 } \right)
\left[ \sqrt{
\Delta_c^2+ (2+\varphi )(D^2 - \Delta_c^2) } -\Delta_c \right]^2 \qquad |\qquad \Delta_c = 10 \qquad D = 20 \\\\
\mathrm{~area}
&=& \left( \dfrac{ \varphi -1 } { 5 } \right)
\left[ \sqrt{
100+ (2+\varphi )(400 - 100) } -10 \right]^2 \\\\
\mathrm{~area}
&=& \left( \dfrac{ \varphi -1 } { 5 } \right)
\left[ \sqrt{
100+ (2+\varphi )300 } -10 \right]^2 \\\\
\mathrm{~area}
&=& 0.12360679775\cdot
\left[ 34.4297864737 -10 \right]^2\\\\
\mathrm{~area}
&=& 0.12360679775\cdot 596.814467151\\\\
\mathrm{~area}
&=& 73.7703251354 \mathrm{~cm^2}
\end{array}
$}}$$