+0

# A parabola ax^2+bx+c contains the points (-1,0), (0,5), and (5,0). Find the value of 100a + 10b + c.

0
66
1

A parabola ax^2+bx+c contains the points (-1,0), (0,5), and (5,0). Find the value of 100a + 10b + c.

Guest Feb 3, 2018

#1
+26489
+2

(-1,5):   a(-1)2+b(-1)+c = 0 or a - b + c = 0

(0,5):    a(0)2+b(0)+c = 5 or c = 5

(5,0):   a(5)2+b(5)+c = 0 or 25a + 5b +c = 0

So:

a - b + 5 = 0.        (1)

25a + 5b + 5 = 0. (2)

Multiply (1) by 5 and add to (2):

30a + 30 = 0.  So a = -1

Hence, From (1):

-1 - b + 5 = 0. So b = 4

a = -1, b = 4, c = 5

I’ll leave you to calculate 100a + 10b + c

Alan  Feb 3, 2018
edited by Alan  Feb 3, 2018
Sort:

#1
+26489
+2

(-1,5):   a(-1)2+b(-1)+c = 0 or a - b + c = 0

(0,5):    a(0)2+b(0)+c = 5 or c = 5

(5,0):   a(5)2+b(5)+c = 0 or 25a + 5b +c = 0

So:

a - b + 5 = 0.        (1)

25a + 5b + 5 = 0. (2)

Multiply (1) by 5 and add to (2):

30a + 30 = 0.  So a = -1

Hence, From (1):

-1 - b + 5 = 0. So b = 4

a = -1, b = 4, c = 5

I’ll leave you to calculate 100a + 10b + c

Alan  Feb 3, 2018
edited by Alan  Feb 3, 2018

### 10 Online Users

We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  See details