+0  
 
0
1148
3
avatar

A particle moving back and forth along a straight line has position function given by x(t)=sin(π(t−1)) with t in sec.

(a) Estimate its instantaneous velocity at t=1 sec using a table of values (up to two decimal places).

(b) Using part (a), what can you say about the limit limx→0sin(πx)/x ?

 Sep 13, 2016
edited by Guest  Sep 13, 2016
edited by Guest  Sep 13, 2016
edited by Guest  Sep 13, 2016
edited by Guest  Sep 13, 2016
edited by Guest  Sep 13, 2016
edited by Guest  Sep 13, 2016
edited by Guest  Sep 13, 2016
 #1
avatar
0

a) Estimate its instantaneous velocity at t=1 sec using a table of values (up to two decimal places).

What does your "table of values" say when t=1?.

 

(b) Using part (a), what can you say about the limit limx→0sin(πx)/x = Pi

 Sep 13, 2016
 #2
avatar
0

There's no table of values given

 Sep 13, 2016
 #3
avatar+118654 
0

     

A particle moving back and forth along a straight line has position function given by x(t)=sin(π(t−1)) with t in sec.

(a) Estimate its instantaneous velocity at t=1 sec using a table of values (up to two decimal places).

You have not given us a table so I will use calculus.

 

\(x(t)=sin(\pi(t-1))\\ \dot{x}(t)=\pi cos(\pi(t-1))\\ \dot{x}(1)=\pi cos(\pi(1-1))\\ \dot{x}(1)=\pi cos(0)\\ \dot{x}(1)=\pi *1\\ \dot{x}(1)=\pi\\ \dot{x}(1)\approx3.14\)

 

So instantaneous velocity when t=1 is  pi 

 

 

(b) Using part (a), what can you say about the limit limx→0sin(πx)/x ?

 

I am really not sure what you are being directed to do here but this is the answer.

 

Using L'Hopital's rule

 

\(\displaystyle\lim_{x\rightarrow 0}\;\frac{sin(\pi x)}{x}\\ =\displaystyle\lim_{x\rightarrow 0}\;\frac{\frac{d}{dx}sin(\pi x)}{\frac{d}{dx}x}\\ =\displaystyle\lim_{x\rightarrow 0}\;\frac{\pi cos(\pi x))}{1}\\~\\ =\pi \)

 

 

 Sep 13, 2016

4 Online Users

avatar
avatar