+0  
 
0
582
2
avatar

A plus b equals 1. A squared plus b squared is 2. What is a cubed plus b cubed

Guest Nov 24, 2014

Best Answer 

 #1
avatar+93038 
+13

A + b = 1  →  b = 1 - A 

So, subsituting, we have

A2 + (1 - A)2 = 2

A2 + 1 - 2A  + A2 = 2    rearrange

2a2 - 2A - 1 = 0      And using the on-site solver and substituting "x" for "A" ......we have....

$${\mathtt{2}}{\mathtt{\,\times\,}}{{\mathtt{x}}}^{{\mathtt{2}}}{\mathtt{\,-\,}}{\mathtt{2}}{\mathtt{\,\times\,}}{\mathtt{x}}{\mathtt{\,-\,}}{\mathtt{1}} = {\mathtt{0}} \Rightarrow \left\{ \begin{array}{l}{\mathtt{x}} = {\mathtt{\,-\,}}{\frac{\left({\sqrt{{\mathtt{3}}}}{\mathtt{\,-\,}}{\mathtt{1}}\right)}{{\mathtt{2}}}}\\
{\mathtt{x}} = {\frac{\left({\sqrt{{\mathtt{3}}}}{\mathtt{\,\small\textbf+\,}}{\mathtt{1}}\right)}{{\mathtt{2}}}}\\
\end{array} \right\} \Rightarrow \left\{ \begin{array}{l}{\mathtt{x}} = -{\mathtt{0.366\: \!025\: \!403\: \!784\: \!438\: \!6}}\\
{\mathtt{x}} = {\mathtt{1.366\: \!025\: \!403\: \!784\: \!438\: \!6}}\\
\end{array} \right\}$$
   

So, b = 1 - (-[√3 - 1 ] /  2)   =  [1 + √3 ] / 2     or  b = 1 - [ [1 + √3 ] / 2] = [1 - √3 ] / 2

So

A3 + b3 = ( [1 - √3] / 2 )3  + ( [1 + √3 ] / 2)3 = ( [1 + √3] / 2 )3  + ( [1 - √3 ] / 2)3 = 2.5

 

CPhill  Nov 24, 2014
 #1
avatar+93038 
+13
Best Answer

A + b = 1  →  b = 1 - A 

So, subsituting, we have

A2 + (1 - A)2 = 2

A2 + 1 - 2A  + A2 = 2    rearrange

2a2 - 2A - 1 = 0      And using the on-site solver and substituting "x" for "A" ......we have....

$${\mathtt{2}}{\mathtt{\,\times\,}}{{\mathtt{x}}}^{{\mathtt{2}}}{\mathtt{\,-\,}}{\mathtt{2}}{\mathtt{\,\times\,}}{\mathtt{x}}{\mathtt{\,-\,}}{\mathtt{1}} = {\mathtt{0}} \Rightarrow \left\{ \begin{array}{l}{\mathtt{x}} = {\mathtt{\,-\,}}{\frac{\left({\sqrt{{\mathtt{3}}}}{\mathtt{\,-\,}}{\mathtt{1}}\right)}{{\mathtt{2}}}}\\
{\mathtt{x}} = {\frac{\left({\sqrt{{\mathtt{3}}}}{\mathtt{\,\small\textbf+\,}}{\mathtt{1}}\right)}{{\mathtt{2}}}}\\
\end{array} \right\} \Rightarrow \left\{ \begin{array}{l}{\mathtt{x}} = -{\mathtt{0.366\: \!025\: \!403\: \!784\: \!438\: \!6}}\\
{\mathtt{x}} = {\mathtt{1.366\: \!025\: \!403\: \!784\: \!438\: \!6}}\\
\end{array} \right\}$$
   

So, b = 1 - (-[√3 - 1 ] /  2)   =  [1 + √3 ] / 2     or  b = 1 - [ [1 + √3 ] / 2] = [1 - √3 ] / 2

So

A3 + b3 = ( [1 - √3] / 2 )3  + ( [1 + √3 ] / 2)3 = ( [1 + √3] / 2 )3  + ( [1 - √3 ] / 2)3 = 2.5

 

CPhill  Nov 24, 2014
 #2
avatar+20745 
+10

A plus b equals 1. A squared plus b squared is 2. What is a cubed plus b cubed

$$a+b=1 \\
a^2+b^2 = 2\\
a^3+b^3 = ?$$

I.

$$a^3+b^3 = (a+b)(a^2-ab+b^2) \quad | \quad a+b=1 \ and \ a^2 +b^2 = 2 \\
a^3+b^3 = 1*(2-ab) \\
a^3 + b^3 = 2 -ab$$

II.

$$(a+b)^2 = a^2+ 2ab + b^2 \quad | \quad a+b=1 \ and \ a^2+b^2 = 2\\
1^2 = 2 + 2ab \\
-1 = 2ab \\
ab = -\frac{1}{2}$$

III.

$$a^3+b^3 = 2-ab \quad | \quad ab = -\frac{1}{2} \\
a^3+b^3 = 2 - ( -\frac{1}{2} ) \\
a^3+b^3 = 2 + \frac{1}{2} \\
\boxed{a^3+b^3 = 2.5}$$

heureka  Nov 24, 2014

21 Online Users

avatar
avatar
avatar

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.