+0  
 
0
194
1
avatar+8 

A point  (x,y) with integer coordinates is randomly selected such that \($0 \le x \le 8$\) and \($0 \le y \le 4$\). What is the probability that \($x + y \le 4$\)? Express your answer as a common fraction.

theavidreader  Nov 12, 2017
 #1
avatar+86919 
+1

x =  { 0, 1 , 2, 3 , 4, 5, 6, 7 ,8 }

y =  { 0, 1, 2, 3, 4 }

 

There are 45 possible sums  [ many repeated ]

 

The ones  ≤ 4 are

 x        

 0        can be paired with 5 y terms

 1        can be paired with 4 y terms

 2        can ve paires with  3 y terms

 3        can be paired with  2 y terms

 4        can be paired with  1  y term

 

So...the probability  that  x + y  ≤  4  is

 

[ 1 + 2 + 3 + 4 + 5] / 45  =  15 / 45  =     1 / 3

 

 

cool cool cool

CPhill  Nov 12, 2017

7 Online Users

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.