Let π(π₯)=βπ₯βπ₯ββf(x)=βxβxββ for π₯β₯0.
(a) Find all π₯β₯0xβ₯0 such that π(π₯)=1.f(x)=1.
(b) Find all π₯β₯0xβ₯0 such that π(π₯)=3.f(x)=3.
(c) Find all π₯β₯0xβ₯0 such that π(π₯)=5.f(x)=5.
(d) Find the number of possible values of π(π₯)f(x) for 0β€π₯β€10.
Thanks so much!