+0  
 
+1
122
8
avatar+2247 

Let \(a_1,a_2,a_3,\dots\) be an arithmetic sequence. If \(\frac{a_4}{a_2} = 3\), what is \(\frac{a_5}{a_3}\)?

tertre  Jan 23, 2018
Sort: 

8+0 Answers

 #1
avatar+92191 
0

Am I allowed to answer??

Melody  Jan 23, 2018
 #2
avatar+92191 
+2

Let \( a_1,a_2,a_3,\dots \)   be an arithmetic sequence. If  \(\dfrac{a_4}{a_2} = 3\), what is  \(\dfrac{a_5}{a_3}\) ?

 

 

\(d=(a_2-a_1)\\ so\\ a_1=a_1\\\ a_2=a_1+ (a_2-a_1)\\ a_3=a_1+ 2(a_2-a_1)\\ a_4=a_1+ 3(a_2-a_1)\\ a_5=a_1+ 4(a_2-a_1)\\~\\ \)

 

\(\dfrac{a_1+ 3(a_2-a_1)}{a_1+ (a_2-a_1)}=3\qquad find \qquad \dfrac{a_1+ 4(a_2-a_1)}{a_1+ 2(a_2-a_1)}\\ \dfrac{a_1+ 3(a_2-a_1)}{a_1+ (a_2-a_1)}=3\\ a_1+ 3(a_2-a_1)=3(a_1+ (a_2-a_1))\\ a_1+ 3(a_2-a_1)=3a_1+ 3(a_2-a_1)\\ a_1=3a_1\\ a_1=0\\ a_2=d\)

 

so

 

\(\dfrac{a_5}{a_3}=\dfrac{a+4d}{a+2d}=\dfrac{4a_2}{2a_2}=2\)

Melody  Jan 23, 2018
 #3
avatar+19206 
+3

Let 

\(\mathbf{ a_1,a_2,a_3,\dots }\)

be an arithmetic sequence.

If \(\displaystyle \frac{a_4}{a_2} = 3,\)

 what is \(\displaystyle \frac{a_5}{a_3}\) ?

 

\(\begin{array}{|rcll|} \hline a_1 &=& a \\ a_2 &=& a+d \\ a_3 &=& a+2d \\ a_4 &=& a+3d \\ a_5 &=& a+4d \\ \hline \\ \dfrac{a_4}{a_2} &=& 3 \quad & | \quad a_4 = a+3d \qquad a_2 = a+d \\\\ \dfrac{a+3d}{a+d} &=& 3 \\\\ a+3d &=& 3(a+d) \\ a+\not{3d} &=& 3a+\not{3d} \\ a &=& 3a \quad & | \quad -a \\ 0 &=& 2a \quad & | \quad :2 \\ 0 &=& a \\ \mathbf{a} &\mathbf{=}& \mathbf{0} \\ \hline \end{array}\)

 

\(\begin{array}{|rclcr|} \hline a = 0: \\ \hline a_1 &=& 0 \\ a_2 &=& 0+d &=& d \\ a_3 &=& 0+2d &=& 2d \\ a_4 &=& 0+3d &=& 3d \\ a_5 &=& 0+4d &=& 4d \\ \hline \\ \dfrac{a_5}{a_3} &=& \dfrac{4\cdot \not{d}}{2\cdot \not{d}} \\\\ \dfrac{a_5}{a_3} &=& \dfrac{4}{2} \\\\ \mathbf{\dfrac{a_5}{a_3}} &\mathbf{=}& \mathbf{2} \\ \hline \end{array}\)

 

 

laugh

heureka  Jan 23, 2018
 #4
avatar+85623 
+2

a4 / a2  =  3

Find

a5 / a3

 

a4 / a2   = 3   ⇒    a4  =  3a2   (1)

 

a2  +  2d   = a4      sub (1)  into the right side

 

a2  + 2d  =  3a2

 

2d  =   2a2

 

d  =  a2

 

So

 

a5  =  a2 + 3d   =   a2 + 3a2  =  4a2

a3  =  a2 + d    =   a2  + a2  =   2a2

 

So

 

a5 / a3  =   4a2 / 2a2   =  2

 

 

cool cool cool

CPhill  Jan 23, 2018
 #5
avatar+92191 
+1

It seems we are all in agreement :))

Melody  Jan 23, 2018
 #6
avatar+85623 
0

Probably just a coincidence......

 

 

cool cool cool

CPhill  Jan 23, 2018
 #7
avatar+2247 
0

All of you guys are correct! 

 

Sorry, Melody, I was about to type CPhill, Melody, and other users.

tertre  Jan 23, 2018
 #8
avatar+111 
0

Yay! I'm back! smiley

 

Let \(a\)  be the first term, and let \(d\)  be the common difference. Then \(a_n = a + (n - 1)d\) for all \(n\) . In particular, \(a_4 = a + 3d\)  and \(a_2 = a + d\) ,so \(\frac{a + 3d}{a + d} = 3.\) Multiplying both sides by \(a+d\) , we get \(a + 3d = 3a + 3d\),   so \(a=0\)  .

Then, \(\frac{a_5}{a_3} = \frac{a + 4d}{a + 2d} = \frac{4d}{2d} = \boxed{2}.\)

azsun  Jan 23, 2018
edited by azsun  Jan 23, 2018

6 Online Users

We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  See details