+0  
 
+1
1
243
2
avatar+90 

j(x)=2x-3

 

what it \(j({j}^{-1}(x))\)

and what would be \({j}^{-1}(-1)\)

 

Please explain the steps of how you did it and how to do it.

 

Thanks

-Dom

dom6547  Jan 23, 2018
 #1
avatar+771 
+3

Step 1:

  So, to find the inverse, you basically switch x and y, then solve for y.

  j(x) is the same thing as y.

  \(y=2x-3\)

  Switch the x and y.

  \(x=2y-3\)

  Solve for y.

  Add 3 to both sides.

  \(x+3=2y\)

  Divide both sides by 2.

  \(y=\frac{x+3}{2}\)

  Switch the y to j-1(x).

  \(j^{-1}(x)=\frac{x+3}{2}\)

 

Step 2:

  Now for j(j-1(x)).

  You want to plug the value of j-1(x) into j(x) for every x value.

  \(j(\frac{x+3}{2})=2(\frac{x+3}{2})-3\)

  Multiply the 2.

  \(j(j^{-1}(x))=\frac{2(x+3)}{2}-3\)

  The 2's cancel.

  \(j(j^{-1}(x))=x+3-3\)

  The 3's cancel.

  \(j(j^{-1}(x))=x\)

 

Step 3:

  For j-1(-1), plug -1 in for each x value in j-1(x).

  \(j^{-1}(-1)=\frac{(-1)+3}{2}\)

  Add -1 and 3.

  \(j^{-1}(-1)=\frac{2}{2}\)

  2/2 equals 1, so \(j^{-1}(-1)=1\).

AdamTaurus  Jan 23, 2018
 #2
avatar+90 
+1

Thank you!

dom6547  Jan 23, 2018

8 Online Users

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.